The Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Only for mathematicians!
Replies: 4   Last Post: Aug 29, 2014 12:41 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
mueckenh@rz.fh-augsburg.de

Posts: 18,076
Registered: 1/29/05
Re: Only for mathematicians!
Posted: Aug 29, 2014 9:22 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Friday, 29 August 2014 01:23:34 UTC+2, Ben Bacarisse wrote:
>
> Please feel free to ignore my requests that you show a formula
> that is true in set theory and false in WMaths. I don't post it in the
> hope that you will show one, I post it because your failure to show one
> speaks volumes.


You are lying! I have shown a matheological formula that is false in mathematics:

Um von dieser Eigenschaft des Inbegriffes aller reellen algebraischen 116 Zahlen eine Anwendung zu geben, füge ich dem § 1 den § 2 hinzu, in welchem ich zeige, daß, wenn eine beliebige Reihe reeller Zahlgrößen von der Form (2) vorliegt, man in jedem vorgegebenen Intervalle Zahlen ? bestimmen kann, welche nicht in (2) enthalten sind; kombiniert man die Inhalte dieser beiden Paragraphen, so ist damit ein neuer Beweis des zuerst von Liouville bewiesenen Satzes gegeben, daß es in jedem vorgegebenen Intervalle unendlich viele transzendente, d. h. nicht algebraische reelle Zahlen gibt.
G. Cantor: Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Crelles Journal f. Mathematik Bd. 77, S. 258 - 262 (1874

Would you care to formalize this "proof" yourself or look up a formalization which is certainly existing?

Regards, WM



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.