```Date: Sep 20, 1996 12:50 AM
Author: Andrei Constantinescu
Subject: Re:  [mg4782] Help - transposing equation

The equations are pretty complicated as you have a DegK and Log[DegK]  in the same time, so generally will have just a numerical solution. However there are some manipulations on mathematica that can transform everything in one equation:      443.414    Log[10]Out[4]= -5.427146 + 3.65297 x - ------- == -------                                   y       Log[a]                                                               Log[b]In[3]:= %1 /. Log[DegK] -> x                     443.414                Log[10]Out[3]= -5.427146 - ------- + 3.65297 x == -------                     DegK                  Log[a]In[4]:= % /. DegK -> y                                443.414    Log[10]Out[4]= -5.427146 + 3.65297 x - ------- == -------                                   y       Log[a]In[5]:= %2 /. Log[DegK] -> x                                           2    Log[10]Out[5]= -36.74404 + 24.10071 x - 3.38936 x  == -------                                               Log[b]In[6]:= Solve[ % , x ]                         -6            6Out[6]= {{x -> (1.4752 10   (2.41007 10  Log[b] -                                12       2>           1. Sqrt[5.80844 10   Log[b]  -                           6                            6>              1.35574 10  Log[b] (230259. + 3.6744 10  Log[b])])) / Log[b]},                       -6            6>    {x -> (1.4752 10   (2.41007 10  Log[b] +                             12       2>           Sqrt[5.80844 10   Log[b]  -                          6                            6>             1.35574 10  Log[b] (230259. + 3.6744 10  Log[b])])) / Log[b]}}In[7]:= Solve[ %4 , y ]0   Log[b]  -                          6                            6>             1.35574 10  Log[b] (230259. + 3.6744 10  Log[b])])) / Log[b]}}In[7]:= Solve[ %4 , y ]Out[7]= {{y -> ----------------------------------------}}               -0.630332 - 1.48568 Log[a] + 1. x Log[a]In[8]:= % /. %6Out[8]= {{{y ->  >       (121.385 Log[a]) /  >        (-0.630332 - 1.48568 Log[a] +                       -6                   6>          (1.4752 10   Log[a] (2.41007 10  Log[b] -                                   12       2>               1. Sqrt[5.80844 10   Log[b]  -                               6                            6>                  1.35574 10  Log[b] (230259. + 3.6744 10  Log[b])])) /  >           Log[b])}}, {{y ->  >       (121.385 Log[a]) /  >        (-0.630332 - 1.48568 Log[a] +  >           Log[b])}}, {{y ->  >       (121.385 Log[a]) /  >        (-0.630332 - 1.48568 Log[a] +                       -6                   6>          (1.4752 10   Log[a] (2.41007 10  Log[b] +                                 12       2>               Sqrt[5.80844 10   Log[b]  -                              6                            6>                 1.35574 10  Log[b] (230259. + 3.6744 10  Log[b])])) / Log[b] >          )}}}.... and now you have actually  y = DegK as a function of Log[DegK] = x , which gives you the desired equation in DegK !  Regards,   a + andrei
```