```Date: Nov 30, 2012 8:17 AM
Author: Milo Gardner
Subject: Re: Egypttian and Greek sqare root

Working with someone this write up was found in one week..http://planetmath.org/encyclopedia/EgyptianAndGreekSquareRoot.htmlExpanded demonstrations of two Q.E.D. proofs are seriously needed. The first expands a common Egyptian and Greek rational number system recorded in concise unit fraction series. The second expands square root examples also recorded in concise unit fraction series.On the rational number level n/144, n/145, n/146 and a few other table of unit fraction series calculations will be discussed. The n/144 table will be easy, 2/144 = 1/72, 3/144 = (2 + 1)/144 = 1/72 + 1/144 and so forth. The n/p cases will show that divisible denominators were created by LCM m as Ahmes created his 2/n table.On the square root level, the square root of 144 = 12; the square root of 145 began with (12 + 1/25)^2 with a rational error EI = 21/625; increased 1/24 by 1/625 to 1/24 such that (12 + 1/24)^2 found an irrational error E2 = (1/24)^2, following the method used to solve the square root of 164. About a half dozen of these example betweem 144 and 169 will be shown.
```