Date: Dec 4, 2012 6:49 AM
Author: Aatu Koskensilta
Subject: Re: Given a set , is there a disjoint set with an arbitrary cardinality?

jaakov <removeit_jaakov@deleteit_ro.ru> writes:

>> I'd like to be sure that the claims
>>
>> |X|<|A| => |A| = |A\X|
>>
>> k<|B| => exists Y subset B such that |Y|=k
>>
>> are valid without the regularity and purity axioms.

>
> I think that these claims to not depend on regularity or purity.


They don't.

--
Aatu Koskensilta (aatu.koskensilta@uta.fi)

"Wovon man nicht sprechen kann, darĂ¼ber muss man schweigen"
- Ludwig Wittgenstein, Tractatus Logico-Philosophicus