```Date: Dec 14, 2012 6:05 AM
Author: Pubkeybreaker
Subject: Re: No Putnam spoilers please

On Dec 13, 2:01 pm, Dr J R Stockton<reply1...@merlyn.demon.co.uk.invalid> wrote:> In sci.math message <MPG.2b2efda4be25e802989...@news.eternal-> september.org>, Sun, 9 Dec 2012 19:58:25, Wasell> <Was...@example.invalid> posted:>> >On Sat, 8 Dec 2012 19:13:02 +0000, in article> ><1tj7wWW+E5wQF...@invalid.uk.co.demon.merlyn.invalid>, Dr J R Stockton> >wrote:>> >> Can anyone (or more) please provide here the last ten decimal digits> >(in> >> order) of  ((3^349)-1)/2, freshly and independently calculated and not> >> copied from any other medium, and not using my LongCalc or VastCalc?>> >\$ perl -Mbigint -e 'print substr( ((3**349)-1)/2, -10 )'> >7379284041>> Real Life intervened.  Thanks to all four.  I've not checked the whole> of their long numbers, but parts are right so no doubt about the rest.> I had also used Richard's approach, in JavaScript.>> Some years ago, while reading a book that showed (roughly)>>                             (3^349-1)/2>                                  =>                         three lines of digits>                                  =>                          two lines of digits>                                  *>                          two lines of digits>> I noticed a missing digit near the beginning of the second "two lines",> and reported it.  I was evidently checking the expression against the> multiplication.  I have now noticed that your second 7 is, in the book,> an 8 - 7389284041 - and wanted a cross-check before reporting the new> fault.  OTOH, before doing that, I should re-check ALL digits.>(3^349-1)/2 =94042850889984510998289152320438541798532018021653956283741193211654025280185459.P87Where P87 indicates a prime cofactor of 87 digits.
```