Date: Dec 14, 2012 4:07 PM
Author: Halitsky
Subject: Re linearity of the Axxxx SE plots – hold on to yo<br>	ur hat

In your post of 12/14 at227 pm, you wrote:

?So far the all the plots look pretty linear, with just a hint of
positive curvature, but it's hard to say because SEs are themselves
heteroscedastic.?

The Axxxx SEplots I?m going to send at set 2 and set 3 may be relevant
to this matter, for the reason(s) below.

As soon as I started the Axxxx SE plots for set 2 (none of which
you?ve yet received), I immediately saw something which you can see
for yourself by plotting the two tables at the end of this post, which
are for:

a) N_1_a1_S (you already have the plot for this one)
b) N_2_a1_S (haven?t sent this one to you yet)

So, as you review the set 2 plots I?m going to start sending you now,
please keep an eye out to see whether you think that each new set 2
plot and its corresponding set 1 plot differ in the same way as the
plots from the two tables below. If they do, then we may have quite a
story to tell about the evolution of the a1 hemoglobins, depending
additionally on how the plots pattern at set 3.

Also, one methodological point is worth mentioning ? it may well be
that we have to use different sets at different lengths in order to
get the most predictive results from our regressions. This is
something that has never occurred to me before, but it makes perfect
sense if there is any merit to of the ?evolutionary story? that we may
be privileged to watch unfold as we step through the set 2 and set 3
plots for the Axxxx SE?s ...

Here are the two tables:

N_1_a1_S for AuqSE

LenID,AuqSE
24,2.391090499
25,1.970272847
26,1.833852826
27,1.627804729
28,1.660754005
29,2.100638906
30,2.095449739
31,2.741154079
32,2.882615934
33,2.046833808
34,2.330966524
35,2.345954541
36,2.347776152
37,2.38379688
38,3.316455252
39,4.216434186
40,2.968687167
41,4.142953247
42,2.944999077
43,4.495050552
44,4.272428433
45,3.701894193
46,3.943947579
47,3.851746773
48,3.518900664
49,3.270414279
50,3.799579601
51,4.589503931
52,3.706371331
53,6.196501544
54,4.204274757
55,4.420960299
56,4.142962385
57,3.817171845
58,6.906216774
59,7.956243823
60,2.854383526
61,3.521807881
62,4.620311737
63,4.468918831
64,4.396886144
65,3.808878305
66,3.867478161
67,4.254578321
68,4.839232026
69,3.49155102
70,4.387907593
71,6.478845422
72,4.211951915
73,6.040173708
74,8.259278149
75,5.726134066
76,5.473975542
77,5.104227158
78,5.432747382
79,5.90339531
80,4.561326404
81,4.70453793
82,7.642736138
83,7.371524379
84,6.050326507
85,11.51203861
86,8.080943039
87,14.92212195
88,5.877460304
89,13.79719486
90,13.26087283
91,6.74533113
92,9.99828549
93,8.519877424
94,7.548529057
95,14.10284784
96,16.29681278
97,10.70332106
98,16.23766271
99,7.295347809
100,6.860653359
101,7.480988142
102,9.215511046
103,13.77380369
104,10.66342047
105,16.06223739
106,10.25084926
107,17.33622667
108,6.683281478
109,10.64821667
110,8.261818482
111,18.03621053
112,8.203764319
113,10.4479606
114,15.00264375
115,7.103613139
116,6.062510063
117,14.83693648
118,23.74404795
119,11.8211972
120,8.007851245
121,16.36658664
122,11.82042482
123,6.576225902
124,7.97205398

N_2_a1_S for AuqSE
LenID,AuqSE
24,2.009510899
25,2.079532091
26,2.005311512
27,2.065102106
28,1.79708132
29,2.25021611
30,2.023803981
31,3.104929517
32,2.725543284
33,2.277963818
34,2.693343371
35,2.765368032
36,2.810260396
37,2.871219663
38,2.887943477
39,3.2552243
40,3.424801687
41,4.082266916
42,3.940772349
43,4.327475125
44,4.333196572
45,3.923964932
46,4.364002233
47,3.128401813
48,4.125673988
49,4.898836764
50,4.038263422
51,4.510564961
52,4.366261094
53,4.570148472
54,5.114817395
55,5.090364099
56,4.964979812
57,4.572620636
58,4.342199195
59,4.342526169
60,5.367979026
61,3.815912772
62,4.404916381
63,5.555182799
64,7.83624113
65,6.038510007
66,5.500534573
67,6.113190178
68,8.994647295
69,6.008023666
70,5.452987842
71,6.547399574
72,6.909605179
73,5.44707708
74,6.861502505
75,7.913779537
76,8.763370263
77,7.579007665
78,7.236166753
79,6.521927747
80,6.780374612
81,9.793383281
82,7.415349337
83,9.751480335
84,9.29584359
85,8.956051219
86,16.53304959
87,10.06962341
88,8.356779285
89,7.845313074
90,5.865301697
91,8.538208941
92,9.855107209
93,8.368842383
94,9.017658787
95,6.537178028
96,6.261494533
97,6.021414213
98,9.947415174
99,9.989875204
100,8.669174851
101,10.06496757
102,11.71200846
103,12.02642726
104,11.31683809
106,9.313690275
107,10.91630402
109,10.45031468
115,10.93027511