```Date: Dec 27, 2012 9:37 PM
Author: Graham Cooper
Subject: Re: The Diagonal Argument

On Dec 28, 10:03 am, Virgil <vir...@ligriv.com> wrote:> In article> <dc67df4d-c740-4c07-b66d-24dc52f8c...@pd8g2000pbc.googlegroups.com>,>  Graham Cooper <grahamcoop...@gmail.com> wrote:>>>>>>>>>> > > Try to Visualise an example.>> > > L(x,y)> > > +---------------->> > > | 0. 2 3 4 5 6 7 ..> > > | 0. 9 8 7 6 5 5 ..> > > | 0. 1 2 3 1 2 3 ..> > > | 0. 9 8 9 8 9 8 ..> > > | 0. 6 5 6 5 6 5 ..> > > | 0. 5 6 5 6 5 6 ..> > > |> > > v>> > > Now apply your FLIP(d) function to the whole plane>> > > T(x,y)> > > +---------------->> > > | 0. 6 6 6 6 5 5 ..> > > | 0. 5 5 5 5 6 6 ..> > > | 0. 6 6 6 6 6 6 ..> > > | 0. 5 5 5 5 5 5 ..> > > | 0. 5 6 5 6 5 6 ..> > > | 0. 6 5 6 5 6 5 ..> > > |> > > v>> > > Your claim is that is you take any path from>> > > T(1,?)> > > T(2,?)> > > T(3,?)> > > ...>> > > and repeat that process you must end up with an infinite string absent> > > from L?>> > i.e.   ANTIDIAG = T(1,1) T(2,2) T(3,3) T(4,4) ...>> > But Obviously  T(1,1) T(2,99) T(3,10110) T(4,7) ...>> > is not provably absent from L.>> > Remember Given a Stack of ESSAYS with every possible sentence written> > in every possible order, taking the 1st word of Essay 1, changing it,> > then the 2nd word of Essay 2, changing it, never produces a unique> > sentence or any original writing at all!  Similarly the ANTIDIAG> > PROCESS never conjures a Unique Digit Sequence!>> > In fact, using a Symmetric FLIP(d) Function>> >  L(x,y)> >  +---------------->> >  | 0. 2 3 4 5 6 7 ..> >  | 0. 9 8 7 6 5 5 ..> >  | 0. 1 2 3 1 2 3 ..> >  | 0. 9 8 9 8 9 8 ..> >  | 0. 6 5 6 5 6 5 ..> >  | 0. 5 6 5 6 5 6 ..> >  |> >  v>> > FLIP(d) = 9-d>> > Minor Problem with:>> > 0.49999...> > <=FLIP=>> > 0.50000...>> >  T(x,y) = FLIP(L(x,y))> >  +---------------->> >  | 0. 7 6 5 4 3 2 ..> >  | 0. 0 1 2 3 4 4 ..> >  | 0. 8 7 6 8 7 6 ..> >  | 0. 0 1 0 1 0 1 ..> >  | 0. 3 4 3 4 3 4 ..> >  | 0. 4 3 4 3 4 3 ..> >  |> >  v>> > NOW  DIAGONAL(T)  is supposedly proven absent from L>> > 0.716133..  NOT COUNTED??>> > yet  if L is the Computable Reals  then>> > T=L>> > PROOF:  For every computable real there is another computable real for> > all digit changing functions.>> > which proves the DIGIT FLIP Operation is a NULL OPERATION> > THERFORE  ANTIDIAGONAL(L) is no more provably absent from L than> > DIAGONAL(L).>> > QED>> > Herc>> Not even as near to being right as WM is, and WM isn't near at all.> --then post your correction FOOL!Herc--P: If Halts(P) Then Loop Else Halt.is obviously a paradoxical program if Halts() exists.BUT IF IT WEREN'T NAMED P then it might not be:Q: If Halts(P) Then Loop Else Halt.is NOT paradoxical.~ GEORGE GREEN (sci.logic)
```