Date: Dec 28, 2012 3:44 AM
Author: Graham Cooper
Subject: Re: The Diagonal Argument

On Dec 28, 2:10 pm, George Greene <gree...@email.unc.edu> wrote:
> On Dec 26, 2:43 pm, Graham Cooper <grahamcoop...@gmail.com> wrote:
>

> > Try to Visualise an example.
>
> YOU DON'T *HAVE* ANY *EXAMPLES*, *DUMBASS*!!
> *YOU* ARE *NOT* the one TEACHING this class!  *I* AM!!
>


*piffle*



>
> > L(x,y)
> > +---------------->
> > | 0. 2 3 4 5 6 7 ..
> > | 0. 9 8 7 6 5 5 ..
> > | 0. 1 2 3 1 2 3 ..
> > | 0. 9 8 9 8 9 8 ..
> > | 0. 6 5 6 5 6 5 ..
> > | 0. 5 6 5 6 5 6 ..
> > |
> > v

>
> > Now apply your FLIP(d) function to the whole plane
>
> > T(x,y)
> > +---------------->
> > | 0. 6 6 6 6 5 5 ..
> > | 0. 5 5 5 5 6 6 ..
> > | 0. 6 6 6 6 6 6 ..
> > | 0. 5 5 5 5 5 5 ..
> > | 0. 5 6 5 6 5 6 ..
> > | 0. 6 5 6 5 6 5 ..
> > |
> > v

>
> > Your claim is that is you take any path from
>
> > T(1,?)
> > T(2,?)
> > T(3,?)
> > ...

>
> > and repeat that process you must end up with an infinite string absent
> > from L?

>
> NO, DUMBASS, THAT IS NOT ANYbody's claim.




Then you agree

0. T(1,2) T(2,1) T(3,3) T(4,4) T(5,5) T(6,6) ...

is potentially ON THE LIST L!

THANK YOU and Good Night!

Herc