Date: Jan 5, 2013 3:44 PM
Author: Jean Dupont
Subject: Re: equivalence of truth of Riemann hypothesis

Op zaterdag 5 januari 2013 18:51:24 UTC+1 schreef David C. Ullrich het volgende:
> On Sat, 5 Jan 2013 08:30:50 -0800 (PST), Jean Dupont
>
> <jeandupont115@gmail.com> wrote:
>
>
>

> >Op zaterdag 5 januari 2013 17:06:11 UTC+1 schreef David Bernier het volgende:
>
> >> On 01/05/2013 09:55 AM, Jean Dupont wrote:
>
> >>
>
> >> > In the book "Math goes to the movies" it is stated that the truth of the Riemann hypothesis is equivalent to the following statement:
>
> >>
>
> >> > $\exists C: \forall x \in \mathbb{N}_0: \left|\pi(x)-\operatorname{li}(x)\right| \leq C \sqrt{x} \log(x)$
>
> >>
>
> >> >
>
> >>
>
> >> > Is this correct?
>
> >>
>
> >> >
>
> >>
>
> >> > thanks
>
> >>
>
> >> > jean
>
> >>
>
> >>
>
> >>
>
> >> The movie "A Beautiful Mind" about John Nash is now on Youtube:
>
> >>
>
> >>
>
> >>
>
> >> < http://www.youtube.com/watch?v=OOWT1371DRg > .
>
> >>
>
> >>
>
> >>
>
> >> I think John Nash in the movie or in reality tried to make
>
> >>
>
> >> head-way on the Riemann Hypothesis ...
>
> >>
>
> >>
>
> >>
>
> >> David Bernier
>
> >>
>
> >>
>
> >>
>
> >> P.S. I'm afraid I can't read Tex or Latex ...
>
> >just copy/paste the line
>
> >
>
> >exists C: \forall x \in \mathbb{N}_0: \left|\pi(x)-\operatorname{li}(x)\right| \leq C \sqrt{x} \log(x)
>
> >
>
> >in the box shown on the following web page and press render:
>
> >http://itools.subhashbose.com/educational-tools/latex-renderer-n-editor.html
>
>
>
> When in Rome... If someone's going to read the TeX you posted, the
>
> fact that it's TeX instead of text just makes it harder to read. You
>
> shouldn't expect people to take the trouble to render your posts
>
> just so they can have the privilege of answering your question!
>
> Instead just post text:
>
>
>
> |pi(x) - li(x)| <= C sqrt(x)/log(x) .
>
>
>
> Simple. Perfectly clear.
>
>
>

I think the part \exists C: \forall x \in \mathbb{N}_0:
should not be omitted...

regards,
jean

> >>
>
> >jean
>
> >>
>
> >>
>
> >> But, please see "error term" in Prime Number Theorem, here:
>
> >>
>
> >>
>
> >>
>
> >> primepages, 1901 von Koch result:
>
> >>
>
> >>
>
> >>
>
> >> < http://primes.utm.edu/notes/rh.html >
>
> >>
>
> >>
>
> >>
>
> >> I trust PrimePages. Also, Schoenfeld(1976) explicit bound:
>
> >>
>
> >>
>
> >>
>
> >> < http://en.wikipedia.org/wiki/Riemann_hypothesis > .