Date: Feb 2, 2013 3:14 AM
Author: Butch Malahide
Subject: Re: looking for example of closed set that is *not* complete in a<br> metric space

On Feb 2, 1:01 am, quasi <qu...@null.set> wrote:
> Butch Malahide wrote
>

> >If (X,d) is not complete, then it has at least one closed
> >subspace which is not complete, namely, (X,d) is a closed
> >subspace of itself.

>
> Moreover, if (X,d) is not complete, it has uncountably many
> subsets which are closed but not complete.


Oh, right. At least 2^{aleph_0} of them.