Date: Feb 17, 2013 12:49 PM
Author: mueckenh@rz.fh-augsburg.de
Subject: Re: Matheology § 222 Back to the roots
On 16 Feb., 16:26, William Hughes <wpihug...@gmail.com> wrote:

> > the nth FIS of l(n) is the nth FIS of d .

> > But this does not make l(n) coFIS to d.

>

> > > > And there is not more than every n.

>

> > > > there is no line l such that d and l

> > > > are coFIS

> > > That would only be true if there was an n larger than every n

>

> > ?? The statement is yours. Are you now withdrawing it.-

The statement is just to the point.

You said: there is no line l such that d and l are coFIS

I said: That (your statement) would only be true if there was an n

larger than every n (but there isn't).

There is only every d_n and for every d_n there is a line containing

it. Otherwise it could not be a d_n.

You are, again, arguing with finished infinity, d having more than

every d_n.

Regards, WM