```Date: Feb 25, 2013 2:19 AM
Author: Bob Hanlon
Subject: Re: A nonconventional ListContourPlot

x[a_, b_] = a*b;y[a_, b_] = Cos[a^2 + b];z[a_, b_] = Sin[a + b^2];data = Table[    {x[i, j], y[i, j], z[i, j]},    {j, -1, 1, 0.1}, {i, -2, 2, 0.1}] //   Flatten[#, 1] &;ListContourPlot[data]ListContourPlot3D[data]However, both ListContourPlot and ListContourPlot3D are difficult tointerpret for this complicated function. I recommend that you look atthe function with ParametricPlot3D.Manipulate[ ParametricPlot3D[  Evaluate[   {x[a, b], y[a, b], z[a, b]}],  {a, -2, 2}, {b, -1, 1},  RegionFunction -> (#3 <= slice &),  BoundaryStyle ->   Directive[Black, Thick],  PlotRange ->   {{-2, 2}, {-1, 1}, {-1, 1}},  PlotPoints -> 50], {{slice, 1}, -0.95, 1, 0.05,  Appearance -> "Labeled"}]Bob HanlonOn Sat, Feb 23, 2013 at 11:32 PM, Luiz Melo <lmelo@ufsj.edu.br> wrote:> Good day,>> x[a_,b_] = a*b;> y[a_,b_] = Cos[a^2 + b];> z[a_,b_] = Sin[a + b^2];>> data = Table[{x[i,j], y[i,j], z[i,j]}, {j, -1, 1, 0.1}, {i, -2, 2, 0.1}];>> For the table above, is it possible to see a ListContourPlot of the z> component as a function of x and y (the values of x and y on the> horizontal and vertical axes, respectively)?>> Thank you in advance> Luiz Melo>
```