Date: Mar 10, 2013 5:40 AM
Author: mueckenh@rz.fh-augsburg.de
Subject: Re: Matheology § 222 Back to the roots
On 10 Mrz., 10:28, William Hughes <wpihug...@gmail.com> wrote:

> On Mar 10, 10:02 am, WM <mueck...@rz.fh-augsburg.de> wrote:

>

> > On 9 Mrz., 23:53, William Hughes <wpihug...@gmail.com> wrote:

> > > We will say x is coFIS to (y) iff

>

> > > i. We have (x) associated to x and

> > > (y) associated to y

>

> > > ii. For every n, (x) and (y) produce the same

> > > finite string.

>

> > "Every given n" is tantamount to "there is a last given n".

>

> I do not talk about "every given n" but about "every n"

> (this means from 1 to n for every n). Note that

> "there is a last n" but it is not a findable natural

> number.

Better say "a not fixable natural number".

>

> Note that you do not need the x_n to exist to say

> something about them.

That is true. For instance we can say that a natural number is either

even or odd.

> For example, you can say no

> x_n that will ever exist will be equal to 0.

Yes, that is another example.

> If you say x is coFIS to y you are saying something

> about x_n and y_n that may not exist at this time.

That is the hardest problem. There are some properties which can be

determined (like the examples above). There are other which cannot.

But in every case we know that there is a line of the list that is

identical with the FIS of d, both existing or not existing yet.

Identity implis coFISionality. Do you deny this?

Regards, WM