Date: Mar 16, 2013 9:07 PM
Author: Earle Jones
Subject: Re: infinity can't exist

In article <13c1e093-ab86-45e6-9417-7526eb422a08@googlegroups.com>,
Craig Feinstein <cafeinst@msn.com> wrote:

> Let's say I have a drawer of an infinite number of identical socks at time
> zero. I take out one of the socks at time one. Then the contents of the
> drawer at time zero is identical to the contents of the drawer at time one,
> since all of the socks are identical and there are still an infinite number
> of them in the drawer at both times. But the contents of the drawer at time
> zero is also identical to the contents of the drawer at time one plus the
> sock that was taken out, since they are exactly the same material. So we have
> the equations:
>
> Contents of drawer at time 0 = Contents of drawer at time 1
> Contents of drawer at time 0 = (Contents of drawer at time 1) plus (sock
> taken out of drawer).
>
> Subtracting the equations, we get
>
> Nothing = sock taken out of drawer.
>
> This is false, so infinity cannot exist.
>
> How does modern mathematics resolve this paradox?


*
Let k = the number of numbers.
Let q = the number of even numbers.

Which is larger, k or q?

earle
*