Date: Mar 22, 2013 6:25 AM
Author: fom
Subject: Re: Matheology § 224

On 3/22/2013 5:14 AM, WM wrote:
> On 22 Mrz., 10:49, fom <fomJ...@nyms.net> wrote:
>> On 3/22/2013 4:13 AM, WM wrote:
>>

>>> On 22 Mrz., 09:54, Virgil <vir...@ligriv.com> wrote:
>>>> On 3/22/2013 1:38 AM, WM wrote:
>>
>>>>> This proves that we can remove all finite lines from the
>>>>> list without changing the contents of the remaining list. And this is
>>>>> remarkable, isn't it?

>>
>>>> Since WM also claims that all the lines of that list are finite lines,
>>>> WM is now claiming one can trow out the entire contents of a list and
>>>> still have the entire original list in place.

>>
>>> That is a consequence of the completed infinity of set theory.
>>
>> He is referring to your claims

>
> I know. They are a consequence of finihed infinity.

>>
>>

>>>> Unfortunately, as in the above claim, what WM claims to be the case
>>
>>> can be proven by induction that holds for every finite line.
>>> Every number that belongs to line n belongs to the next lines too.

>>
>> It should be observed, once again, that the most WM is ever referring
>> to with statements like this is the form of the domain for an
>> induction rather than any true use of inductive proof.

>
> True use of inductive proof has been fonuded by Fermat without any
> reference to domain. Your "true use" refers to "the only method you
> have been taught".

>>
>>> If you are of different opinion, please name a finite line that is not
>>> covered by induction.


Since iterated concatenation as a definition of number
is not induction, pick any one you like.