Date: Mar 22, 2013 11:24 AM
Author: William Hughes
Subject: Re: Matheology § 224

On Mar 22, 10:01 am, WM <mueck...@rz.fh-augsburg.de> wrote:
> On 22 Mrz., 08:19, William Hughes <wpihug...@gmail.com> wrote:
>
>
>
>
>
>
>
>
>

> > On Mar 22, 7:38 am, WM <mueck...@rz.fh-augsburg.de> wrote:
>
> > > On 21 Mrz., 16:46, William Hughes <wpihug...@gmail.com> wrote:
>
> > > > On Mar 21, 2:29 pm, WM <mueck...@rz.fh-augsburg.de> wrote:
>
> > > > > On 21 Mrz., 14:02, William Hughes <wpihug...@gmail.com> wrote:
>
> > > > > > > But you think that after all finite and unnecessary lines another one
> > > > > > > is lurking like a dragon?

>
> > > > > > Now I think that after any finite set of unnecessary lines has
> > > > > > been removed, there still remains an unnecessary line.-

>
> > > > > I know. That's what I wished to prove. In order to believe in the
> > > > > existence of actually infinite sets, it is necessary to have another
> > > > > element after all ordinary elements have been removed.

>
> > > > Nope.  I only talk about removing finite sets of ordinary
> > > > elements.  I do not talk about removing all ordinary elements.

>
> > > Do you know that set theory is timeless? Induction holds for all
> > > natural numbers (not for the set though - but that is out of
> > > interest). This proves that we can remove all finite lines from the
> > > list without changing the contents of the remaining list.

>
> > No, it only proves that you can remove any finite
> > set of lines.-

>
> And what is in your opinion beyond any finite set of lines?


There is no such thing
as "beyond every finite set of lines".
Infinite sets are different from finite sets
but they do not contain anything
"beyond any finite set".
Some infinite sets of lines can be removed without changing
the contents, some cannot.