Date: Mar 24, 2013 4:16 AM
Author: Bob Hanlon
Subject: Re: Integrate with unknow function

If g is the indefinite integral of a contrinuous function f[x] then

Using a replacement rule

ClearAll[f, g, expr];

expr = Integrate[f[d], {d, 0, 3}] -
Integrate[f[d], {d, 0, 2}];

expr /. Integrate[f[x_], {x_, a_, b_}] ->
g[b] - g[a]

-g[2] + g[3]

Alternatively, defining an upvalue for f (TagSet)

ClearAll[f, g, expr];

expr = Integrate[f[d], {d, 0, 3}] -
Integrate[f[d], {d, 0, 2}];

f /: Integrate[f[x_], {x_, a_, b_}] =
g[b] - g[a];

expr

-g[2] + g[3]


Bob Hanlon


On Sat, Mar 23, 2013 at 3:25 AM, Shan <shan.pub@gmail.com> wrote:
> Hi,
>
> I have a very rookie question as follows:
>
> Integrate[f[d], {d, 0,3}] - Integrate[f[d], {d, 0,2}]
>
> How can I get the result as f[d]? Thanks very much for any help!
>
> shan
>