Date: May 16, 2013 7:31 PM
Author: Pubkeybreaker
Subject: Re: First Proof That Infinitely Many Prime Numbers Come in Pairs
On May 16, 12:03 pm, Sam Wormley <sworml...@gmail.com> wrote:

> First Proof That Infinitely Many Prime Numbers Come in Pairs

>

>

>

> >http://www.scientificamerican.com/article.cfm?id=first-proof-that-inf...

> > That goal is the proof to a conjecture concerning prime numbers.

> > Those are the whole numbers that are divisible only by one and

> > themselves. Primes abound among smaller numbers, but they become less

> > and less frequent as one goes towards larger numbers. In fact, the

> > gap between each prime and the next becomes larger and larger -- on

> > average. But exceptions exist: the 'twin primes', which are pairs of

> > prime numbers that differ in value by 2. Examples of known twin

> > primes are 3 and 5, or 17 and 19, or 2,003,663,613 × 2^195,000 - 1 and

> > 2,003,663,613 × 2^195,000 + 1.

>

> > The twin prime conjecture says that there is an infinite number of

> > such twin pairs. Some attribute the conjecture to the Greek

> > mathematician Euclid of Alexandria, which would make it one of the

> > oldest open problems in mathematics.- Hide quoted text -

>

> - Show quoted text -

This is a gross misstatement of the proof. It did NOT prove that there

were infinitely many prime pairs. What it did prove was that the gap

between primes is FINITELY BOUNDED infinitely often. The bound is 70

x 10^6.

While this will probably be improved it is a long way to proving a

bound of

2.