Math Forum
http://mathforum.org/kb
List of forum topicsenRe: Largest equilateral simplex that can be fit in a<br> hyper-rectangle
http://mathforum.org/kb/thread.jspa?messageID=9626033&tstart=0#9626033
I need to generate hyper-rectangle in n-Dim could you tell me how you did it it is very confuse to me to start I will be appreciate a]]>Oct 22, 2014 9:17:57 AMOct 22, 2014 9:17:57 AMrazaq0TO OVERCOME THREE IMPOSSIBLE GEOMETRICAL CONSTRUCTIONS PROBLEMS
http://mathforum.org/kb/thread.jspa?messageID=9610982&tstart=0#9610982
Author : Shyamal Kumar Das E-mail ID : das.shyamal1c@gmail.com]]>Oct 1, 2014 1:08:07 PMOct 1, 2014 1:18:30 PMshyamaldas0Three-dimensional analogue(s) of the Koch Curve?
http://mathforum.org/kb/thread.jspa?messageID=9606443&tstart=0#9606443
I was wondering if anyone here has any experience or knowledge of attempts to extend the Koch Curve into three dimensions, to produce a]]>Sep 26, 2014 12:35:15 PMSep 26, 2014 12:35:15 PMerkdemon@gmail.com0Re: Liouville proof
http://mathforum.org/kb/thread.jspa?messageID=9419925&tstart=0#9419925
]]>Mar 26, 2014 7:49:49 AMMar 26, 2014 7:49:49 AMlilie0Liouville proof
http://mathforum.org/kb/thread.jspa?messageID=9415888&tstart=0#9415888
I have to solve the Liouville's theorem (in R, not C) for a dimension equal to 2 (N). The problem is that I think I do not fully]]>Mar 20, 2014 9:24:19 AMMar 20, 2014 9:24:19 AMlilie1Re: last word
http://mathforum.org/kb/thread.jspa?messageID=9406498&tstart=0#9406498
The best paper I found is "ON VANISHING SUMS OF ROOTS OF UNITY" by Lam and Leung. They]]>Mar 6, 2014 1:02:08 PMMar 6, 2014 1:02:08 PMPavel H0Re: Concurrency-Three parabolas sharing common directrix.
http://mathforum.org/kb/thread.jspa?messageID=9380456&tstart=0#9380456
> > If three parabolas share a common directrix and > each Feb 6, 2014 7:41:13 AMFeb 6, 2014 7:41:13 AMmathma18@gmail.com0Re: Concurrency-Three parabolas sharing common directrix.
http://mathforum.org/kb/thread.jspa?messageID=9379003&tstart=0#9379003
> If three parabolas share a common directrix and each > pair intersect each other in two points, then, the >]]>Feb 3, 2014 8:57:12 PMFeb 3, 2014 8:57:12 PMmathma18@gmail.com0Concurrency-Three parabolas sharing common directrix.
http://mathforum.org/kb/thread.jspa?messageID=9370847&tstart=0#9370847
Jan 22, 2014 9:20:12 PMJan 23, 2014 11:32:27 AMEmmanuel José García2TRISECTION OF ANY ANGLE
http://mathforum.org/kb/thread.jspa?messageID=9333924&tstart=0#9333924
From: Shyamal Kumar Das. E-mailID:das.shyamal1c@gmail.com To: All Mathematicians