Math Forum
http://mathforum.org/kb
List of forum topics
en

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9923832&tstart=0#9923832
Hello Albert, both of your recent Google posts made it to <aioe.org>. There is no need for reposting. Martin.  ]]>
May 3, 2016 2:41:47 AM
May 3, 2016 2:41:47 AM
clicliclic@freenet.de
0

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9923676&tstart=0#9923676
> 16*3 = 48 rules; but distinguishing]]>
May 2, 2016 10:48:32 PM
May 2, 2016 10:48:32 PM
Albert_Rich@msn.com
1

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9923654&tstart=0#9923654
> 16*3 = 48 rules; but distinguishing]]>
May 2, 2016 10:13:30 PM
May 2, 2016 10:13:30 PM
Albert_Rich@msn.com
0

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9922549&tstart=0#9922549
Albert Rich schrieb:> > [...] > > You comment that only 3 rules are required to reduce the]]>
May 1, 2016 3:51:44 AM
May 1, 2016 3:51:44 AM
clicliclic@freenet.de
3

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9922387&tstart=0#9922387
> And the winner is ... Rubi! FriCAS and]]>
Apr 30, 2016 7:18:08 PM
Apr 30, 2016 7:18:08 PM
Albert_Rich@msn.com
4

Hmmm :)
http://mathforum.org/kb/thread.jspa?messageID=9921612&tstart=0#9921612
According to <
Apr 29, 2016 5:45:49 PM
Apr 29, 2016 5:45:49 PM
clicliclic@freenet.de
0

Re: Who is fastest AND optimal?
http://mathforum.org/kb/thread.jspa?messageID=9921611&tstart=0#9921611
Albert Rich schrieb:> > On Tuesday, March 29, 2016 at 11:21:05 AM UTC10, clicl...@freenet.de]]>
Apr 29, 2016 5:45:38 PM
Apr 29, 2016 5:45:38 PM
clicliclic@freenet.de
5

Re: set of Kamke's that could not be solved by Maple nor by Mathematica
http://mathforum.org/kb/thread.jspa?messageID=9921084&tstart=0#9921084
> On 4/28/2016 9:22 PM, Dr Huang]]>
Apr 29, 2016 2:35:52 AM
Apr 29, 2016 2:35:52 AM
drhuang57@gmail.com
0

Re: set of Kamke's that could not be solved by Maple nor by Mathematica
http://mathforum.org/kb/thread.jspa?messageID=9921066&tstart=0#9921066
Apr 29, 2016 1:15:11 AM
Apr 29, 2016 1:15:11 AM
drhuang57@gmail.com
0

Re: set of Kamke's that could not be solved by Maple nor by<br> Mathematica
http://mathforum.org/kb/thread.jspa?messageID=9921027&tstart=0#9921027
> do you mean y>solve[] and y=rootOf() are solution ? Yes, if one]]>
Apr 28, 2016 11:07:29 PM
Apr 28, 2016 11:07:29 PM
nma@12000.org
2