Math Forum
http://mathforum.org/kb
List of forum topicsenUnsolved Problems web site
http://mathforum.org/kb/thread.jspa?messageID=9826504&tstart=0#9826504
As from 1st October 2015, the prize money on offer for a valid solution to most of the problems on the Unsolved Problems web]]>Sep 23, 2015 8:58:02 AMSep 23, 2015 8:58:02 AMtimro21@gmail.com0Solving system of differential equations
http://mathforum.org/kb/thread.jspa?messageID=9824841&tstart=0#9824841
numerically. I am trying to integrate with respect to time 2 transport equations]]>Sep 11, 2015 9:46:50 AMSep 11, 2015 9:46:50 AMsagark9299@gmail.com0Cocompact
http://mathforum.org/kb/thread.jspa?messageID=9823785&tstart=0#9823785
Let S_c be the cocompact space of S. S_c is S with the topology { empty set, S\K | K compact closed within S }.

If K is compact]]>Sep 6, 2015 7:50:26 AMSep 6, 2015 7:50:26 AMmarsh@panix.com0Re: External differential
http://mathforum.org/kb/thread.jspa?messageID=9823451&tstart=0#9823451
wrote:

> However the main question]]>Sep 4, 2015 7:00:25 AMSep 4, 2015 7:00:25 AMfederation2005@netzero.com0Re: An additive identity defined both in terms of subtraction and division
http://mathforum.org/kb/thread.jspa?messageID=9823450&tstart=0#9823450
wrote:

> An additive identity element defined]]>Sep 4, 2015 6:58:20 AMSep 4, 2015 6:58:20 AMfederation2005@netzero.com0Limit to factorization length in a Noetherian ring
http://mathforum.org/kb/thread.jspa?messageID=9821815&tstart=0#9821815
Can an element in a commutative Noetherian ring have factorizations of arbitrary length? Can there be an element $r$ such that for]]>Aug 23, 2015 8:31:50 AMAug 23, 2015 8:31:50 AMakapbarr@gmail.com0Re: Assembled Sets
http://mathforum.org/kb/thread.jspa?messageID=9819670&tstart=0#9819670
> William Elliot wrote on 8/3/2015 11:14 AM: Aug 4, 2015 11:04:13 AMAug 4, 2015 11:04:13 AMmarsh@panix.com0Re: Assembled Sets
http://mathforum.org/kb/thread.jspa?messageID=9819602&tstart=0#9819602
> > To restore the context: > A subset S, is assembled when for]]>Aug 3, 2015 5:32:06 PMAug 3, 2015 5:32:06 PMjbb@notatt.com1Re: Assembled Sets
http://mathforum.org/kb/thread.jspa?messageID=9819579&tstart=0#9819579
> Here is my first attempt at proving the theorem: A space S is > completely normal iff its assembled and connected]]>Aug 3, 2015 1:14:05 PMAug 3, 2015 1:14:05 PMmarsh@panix.com2Re: From the Boundary into the interior
http://mathforum.org/kb/thread.jspa?messageID=9819578&tstart=0#9819578

> > If U is open subset of R^n, a in U, b in bd U, then > >]]>Aug 3, 2015 1:11:52 PMAug 3, 2015 1:11:52 PMmarsh@panix.com0