Math Forum
http://mathforum.org/kb
List of forum topicsenRe: complex analysis: on quotients of analytic functions
http://mathforum.org/kb/thread.jspa?messageID=9686103&tstart=0#9686103
> Let Omega be a region of C. > Suppose that]]>Jan 20, 2015 8:42:01 PMJan 20, 2015 8:42:01 PMhrubin@stat.purdue.edu0Re: complex analysis: on quotients of analytic functions
http://mathforum.org/kb/thread.jspa?messageID=9685303&tstart=0#9685303
> Let Omega be a region of C. > Suppose that f_n(z) and g_n(z) are]]>Jan 19, 2015 8:49:21 AMJan 19, 2015 8:49:21 AMRoland.Franzius@uos.de1complex analysis: on quotients of analytic functions
http://mathforum.org/kb/thread.jspa?messageID=9685165&tstart=0#9685165
Suppose that f_n(z) and g_n(z) are analytic in regions Omega_n, Omega'_n and that the sequences {f_n(z)},]]>Jan 18, 2015 10:33:21 PMJan 18, 2015 10:33:21 PMRoland Queme2Completely Normal Counterexample
http://mathforum.org/kb/thread.jspa?messageID=9681788&tstart=0#9681788
if A subset U \/ V, then A subset U or A subset V

Assembled is a non-intrinsic]]>Jan 15, 2015 9:00:24 AMJan 15, 2015 9:00:24 AMmarsh@panix.com0Re: Minimal Enclosing Triangle
http://mathforum.org/kb/thread.jspa?messageID=9680929&tstart=0#9680929
gle...@pixelglow.com wrote: > Does anybody have a good]]>Jan 13, 2015 2:31:51 PMJan 13, 2015 2:31:51 PMovidiu.parvu@gmail.com0Compact Connected Lot
http://mathforum.org/kb/thread.jspa?messageID=9675161&tstart=0#9675161
Is there an order isomorphism h:S -> S other than id, the identity map?

There is for]]>Jan 2, 2015 9:51:50 PMJan 2, 2015 9:51:50 PMmarsh@panix.com0Closures of countable sets
http://mathforum.org/kb/thread.jspa?messageID=9673280&tstart=0#9673280
Assume S is a space for which every compact subset is the closure of a countable space.

Clearly S is a kc space. Is S 2nd]]>Dec 30, 2014 7:59:34 AMDec 30, 2014 7:59:34 AMmarsh@panix.com0Re: Irreducible polynomials over the rationals
http://mathforum.org/kb/thread.jspa?messageID=9671118&tstart=0#9671118
> On Sunday, December 21, 2014 9:17:38 AM UTC-5, JosÔø Carlos]]>Dec 24, 2014 9:37:11 AMDec 24, 2014 9:37:11 AMjcsantos@fc.up.pt0Re: Irreducible polynomials over the rationals
http://mathforum.org/kb/thread.jspa?messageID=9670571&tstart=0#9670571
>Hi all, > >Can someone provide a bibliographical reference for]]>Dec 23, 2014 8:08:31 AMDec 23, 2014 8:08:31 AMRobin Chapman0Re: Irreducible polynomials over the rationals
http://mathforum.org/kb/thread.jspa?messageID=9670570&tstart=0#9670570
On Sunday, December 21, 2014 9:17:38 AM UTC-5, JosÔø Carlos Santos wrote: >Hi all, > >Can someone]]>Dec 23, 2014 8:07:16 AMDec 23, 2014 8:07:16 AMcxm7@case.edu1