Math Forum
http://mathforum.org/kb
List of forum topicsenRe: ternary relation composition
http://mathforum.org/kb/thread.jspa?messageID=9969447&tstart=0#9969447
> What is known, and what is interesting about the]]>Aug 24, 2016 1:42:40 PMAug 24, 2016 1:42:40 PMirshgrl500@gmail.com0Re: ternary relation composition
http://mathforum.org/kb/thread.jspa?messageID=9969446&tstart=0#9969446
> What is known, and what is interesting about the]]>Aug 24, 2016 1:41:37 PMAug 24, 2016 1:41:37 PMgenenphotos@gmail.com0Re: ternary relation composition
http://mathforum.org/kb/thread.jspa?messageID=9968569&tstart=0#9968569
> What is known, and what is interesting about the]]>Aug 23, 2016 12:23:21 PMAug 23, 2016 12:23:21 PMrockbrentwood@gmail.com0First-order Categorical Logic with quantifiers that respects duality?
http://mathforum.org/kb/thread.jspa?messageID=9968568&tstart=0#9968568
All the approaches I've examined appear to want to codify BOUNDED quantifiers rather than the quantifiers you see in first-order logic. The]]>Aug 23, 2016 12:21:40 PMAug 23, 2016 12:21:40 PMrockbrentwood@gmail.com0Re: Does Grover's algorithm actually search N unordered items in time O(N^(1/2)?
http://mathforum.org/kb/thread.jspa?messageID=9967246&tstart=0#9967246
> Stephen Parrott]]>Aug 21, 2016 3:07:28 PMAug 21, 2016 3:07:28 PMstephenparrottdr@gmail.com0Re: Does Grover's algorithm actually search N unordered items in time O(N^(1/2)?
http://mathforum.org/kb/thread.jspa?messageID=9967247&tstart=0#9967247
]]>Aug 21, 2016 3:07:27 PMAug 21, 2016 3:07:27 PM1Does Grover's algorithm actually search N unordered items in time O(N^(1/2)?
http://mathforum.org/kb/thread.jspa?messageID=9967248&tstart=0#9967248
]]>Aug 21, 2016 3:07:27 PMAug 21, 2016 3:07:27 PM2Re: Disconnecting R^n
http://mathforum.org/kb/thread.jspa?messageID=9932333&tstart=0#9932333
> Is there any set that disconnects R^n that has the property that]]>May 15, 2016 8:09:15 AMMay 15, 2016 8:09:15 AMmarsh@panix.com0Disconnecting R^n
http://mathforum.org/kb/thread.jspa?messageID=9931240&tstart=0#9931240
Is there any set that disconnects R^n that has the property that none of its components disconnect R^n?

Ie is the assumption that such]]>May 13, 2016 7:02:12 AMMay 13, 2016 7:02:12 AMdavecullen@gmail.com1Re: Compact Connected Lot
http://mathforum.org/kb/thread.jspa?messageID=9931239&tstart=0#9931239
> Can you clarify what you mean by order isomorphism? In the context]]>May 13, 2016 7:00:06 AMMay 13, 2016 7:00:06 AMmarsh@panix.com0