Math Forum
http://mathforum.org/kb
List of forum topicsenRe: Cocompact
http://mathforum.org/kb/thread.jspa?messageID=9921230&tstart=0#9921230
> Let S_c be the cocompact space of S. S_c]]>Apr 29, 2016 8:17:51 AMApr 29, 2016 8:17:51 AMdavecullen@gmail.com0Re: Pesky Connection
http://mathforum.org/kb/thread.jspa?messageID=9903420&tstart=0#9903420
Ok if you are asking if there is an example of a metric space which is connected, and at the same time is also totally path disconnected,]]>Apr 10, 2016 7:56:51 AMApr 10, 2016 7:56:51 AMdavecullen@gmail.com0Re: Pesky Connection
http://mathforum.org/kb/thread.jspa?messageID=9903419&tstart=0#9903419
> William Elliot <marsh@panix.com> wrote: >]]>Apr 10, 2016 7:55:41 AMApr 10, 2016 7:55:41 AMR.J.Chapman@exeter.ac.uk0Re: Pesky Connection
http://mathforum.org/kb/thread.jspa?messageID=9903418&tstart=0#9903418
> William Elliot <marsh@panix.com> wrote: >]]>Apr 10, 2016 7:54:36 AMApr 10, 2016 7:54:36 AMmarsh@panix.com0Re: Pesky Connection
http://mathforum.org/kb/thread.jspa?messageID=9903200&tstart=0#9903200
> Let (S,d) a multi-point connected metric space. > Is there a]]>Apr 9, 2016 8:24:05 PMApr 9, 2016 8:24:05 PMdavecullen@gmail.com3Pesky Connection
http://mathforum.org/kb/thread.jspa?messageID=9901956&tstart=0#9901956
Let (S,d) a multi-point connected metric space. Is there a multi-point path connected subspace of S? ]]>Apr 8, 2016 12:31:24 PMApr 8, 2016 12:31:24 PMmarsh@panix.com4Math books for sale
http://mathforum.org/kb/thread.jspa?messageID=9870673&tstart=0#9870673
Almost 2000 books from all areas of pure and applied mathematics, including some computer science, statistics, and mathematical]]>Feb 27, 2016 7:39:12 AMFeb 27, 2016 7:39:12 AMkarl.dilcher@gmail.com0ternary relation composition
http://mathforum.org/kb/thread.jspa?messageID=9869686&tstart=0#9869686
What is known, and what is interesting about the composition of ternary relations? Are there references to ternary relation algebras? ]]>Feb 25, 2016 4:18:44 PMFeb 25, 2016 4:18:44 PMgenenphotos@gmail.com0On Integral approximations to Pi with nonnegative integrands
http://mathforum.org/kb/thread.jspa?messageID=9846923&tstart=0#9846923
Stephen Lucas in his publications presented individual identities of integral approximations to Pi with nonnegative integrands for the]]>Jan 19, 2016 10:00:05 AMJan 19, 2016 10:00:05 AMapovolot@gmail.com0Re: More on e^(pi*sqrt(163))
http://mathforum.org/kb/thread.jspa?messageID=9839884&tstart=0#9839884
Also the following below formulas (6), (7), (8), (9) and (10) allow to get explicit expression for all nine terms of OEIS A003173 (6) a(n)]]>Jan 4, 2016 1:26:38 PMJan 4, 2016 1:26:38 PMapovolot@gmail.com0