Math Forum
http://mathforum.org/kb
List of forum topicsenProofs of 5 color theorem
http://mathforum.org/kb/thread.jspa?messageID=9622663&tstart=0#9622663
Are there other proofs of 5 color theorem, not by Heawood?

Coz I think I found a cool and easy proof using flows.

Thank]]>Oct 18, 2014 4:43:23 AMOct 18, 2014 4:43:23 AMGoodOne0Re: Problem about arithmetic progression
http://mathforum.org/kb/thread.jspa?messageID=9602289&tstart=0#9602289
You basically had it solved. Thanks again, and best wishes with other problems. Ben ----- Original Message ----- From:]]>Sep 20, 2014 8:25:13 PMSep 20, 2014 8:25:13 PMbenb0Re: Problem about arithmetic progression
http://mathforum.org/kb/thread.jspa?messageID=9602095&tstart=0#9602095
prob solved. Yeah, it was good to assume n = m.. :) Thank You very much!

BR Aku ]]>Sep 20, 2014 11:26:33 AMSep 20, 2014 11:26:33 AMAugustus581Re: Problem about arithmetic progression
http://mathforum.org/kb/thread.jspa?messageID=9593624&tstart=0#9593624
1/(b + c) + 1/(a + b) = (b - c)/(b^2 - c^2) + (a - b)/(a^2 -]]>Sep 11, 2014 8:50:44 AMSep 11, 2014 8:50:44 AMarajam@yahoo.com0Re: Problem about arithmetic progression
http://mathforum.org/kb/thread.jspa?messageID=9592205&tstart=0#9592205
In your initial equations, you can let m = n = 1, i.e. b^2 = a^2 + k and c^2 = b^2 + k for k some integer. Then the rest of your]]>Sep 10, 2014 9:39:17 PMSep 10, 2014 9:39:17 PMbenb0Problem about arithmetic progression
http://mathforum.org/kb/thread.jspa?messageID=9590699&tstart=0#9590699
can't solve following prob: Let a, b and c be real numbers. Given that a^2, b^2 and c^2 are in arithmetic progression show that 1 /]]>Sep 10, 2014 7:30:12 AMSep 10, 2014 7:30:12 AMAugustus584Re: Grid Pattern from Simple Formula used to derive integer<br> factorisation
http://mathforum.org/kb/thread.jspa?messageID=9529807&tstart=0#9529807
To create the grid, the following alogirithm can be used:

For each integer c, where c is]]>Jul 26, 2014 2:34:12 AMJul 26, 2014 2:34:12 AMchriscurtisnz0Grid Pattern from Simple Formula used to derive integer<br> factorisation
http://mathforum.org/kb/thread.jspa?messageID=9529546&tstart=0#9529546
This pattern is a grid with cells that are empty of of elements or have infinite elements (each element can be used to construct]]>Jul 25, 2014 7:20:40 PMJul 25, 2014 7:20:40 PMchriscurtisnz1Re: discrete math logic
http://mathforum.org/kb/thread.jspa?messageID=9520720&tstart=0#9520720
> if a(=I drink some wine) then not b (b = I drive > home) > so,when driving home (=b) i'm sober (= not]]>Jul 16, 2014 12:49:03 PMJul 16, 2014 12:49:03 PMPeter Scales0Re: discrete math logic
http://mathforum.org/kb/thread.jspa?messageID=9519308&tstart=0#9519308
so,when driving home (=b) i'm sober (= not a)

but: when my kid fails his exam]]>Jul 15, 2014 3:38:00 PMJul 15, 2014 3:38:00 PMwouter.meeussen@telenet.be0