Math Forum
http://mathforum.org/kb
List of forum topicsenRe: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9274003&tstart=0#9274003
> quasi <quasi@null.set> wrote: >]]>Sep 20, 2013 6:22:50 AMSep 20, 2013 6:22:50 AMnobody@nowhere.invalid0Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9270242&tstart=0#9270242
>William Elliot wrote: >> quasi wrote: Sep 19, 2013 12:55:31 PMSep 19, 2013 12:55:31 PMquasi@null.set0Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9268591&tstart=0#9268591
> Now that those definitions have finally been corrected, > I've found yet another error]]>Sep 19, 2013 10:13:10 AMSep 19, 2013 10:13:10 AMporton@narod.ru0Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9265521&tstart=0#9265521
> On Wed, 18 Sep 2013, quasi wrote: > Sep 19, 2013 5:05:42 AMSep 19, 2013 5:05:42 AMmarsh@panix.com1Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9263151&tstart=0#9263151
I've found yet another error to bring to your attention.

Proposition 3.4. Let f be]]>Sep 19, 2013 1:04:06 AMSep 19, 2013 1:04:06 AMmarsh@panix.com1Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9258870&tstart=0#9258870
> >Victor Porton wrote: Sep 18, 2013 2:18:28 PMSep 18, 2013 2:18:28 PMquasi@null.set1Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9258867&tstart=0#9258867
> >I've corrected the definitions: > >Definition 1. A monotone function (also]]>Sep 18, 2013 1:55:29 PMSep 18, 2013 1:55:29 PMquasi@null.set4Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9258769&tstart=0#9258769
> What's your opinion about the following except from a manuscript? > > I consider]]>Sep 18, 2013 8:13:17 AMSep 18, 2013 8:13:17 AMporton@narod.ru5Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9258744&tstart=0#9258744
> On Wed, 18 Sep 2013, quasi wrote: >> William Elliot]]>Sep 18, 2013 6:31:37 AMSep 18, 2013 6:31:37 AMpeterxpercival@hotmail.com0Re: Homomorphism of posets and lattices
http://mathforum.org/kb/thread.jspa?messageID=9258719&tstart=0#9258719
> If X,Y are posets, a function f:X -> Y is called an order > homomorphism]]>Sep 18, 2013 6:13:03 AMSep 18, 2013 6:13:03 AMmarsh@panix.com2