Math Forum
http://mathforum.org/kb
List of forum topicsenRe: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181254&tstart=0#1181254
Dear friends,

One more comment on the term "numero sano". This term was used extensively by Luca Pacioli in his "Summa". Before]]>Feb 19, 2001 5:31:05 AMFeb 19, 2001 5:31:05 AMluene@MATHEMATIK.UNI-KL.DE0Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181253&tstart=0#1181253
Yesterday, I wrote > > "Numero sano" means integer. The latin "sanus" is already used > by Leonardo]]>Feb 16, 2001 6:11:42 AMFeb 16, 2001 6:11:42 AMluene@MATHEMATIK.UNI-KL.DE0Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181252&tstart=0#1181252
A remark to Fernando Q. Gouvea's question.

> have a root which is a "numero sano" [healthy number???]. So take 2,]]>Feb 15, 2001 12:32:17 PMFeb 15, 2001 12:32:17 PMluene@MATHEMATIK.UNI-KL.DE2Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181250&tstart=0#1181250
On Thu, 15 Feb 2001 05:27:27 +0100, Milan Bozic <milan@sezampro.yu> said:

> In discussing Cardan(o)'s solution of the cubic, one inevitably > comes across the]]>Feb 15, 2001 4:50:20 AMFeb 15, 2001 4:50:20 AMluene@MATHEMATIK.UNI-KL.DE0Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181247&tstart=0#1181247
Bonnie Shulman wrote:

> > However, my question is, how could we, using current methods, > see]]>Feb 14, 2001 11:27:27 PMFeb 14, 2001 11:27:27 PMmilan@sezampro.yu4Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181246&tstart=0#1181246
On Wed, 14 Feb 2001, Bonnie Shulman wrote:

> BUT, in actually]]>Feb 14, 2001 5:57:00 PMFeb 14, 2001 5:57:00 PMye12@rz.uni-karlsruhe.de0Re: [HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181248&tstart=0#1181248
What I meant to write was cos[(arctan 11/2)/3]. And, indeed, as one quickly]]>Feb 14, 2001 1:53:08 PMFeb 14, 2001 1:53:08 PMbshulman@abacus.bates.edu0[HM] Bombelli: Cube root of Complex Nos.
http://mathforum.org/kb/thread.jspa?messageID=1181245&tstart=0#1181245
Dear List members,

In discussing Cardan(o)'s solution of the cubic, one inevitably comes across the application of his method to the]]>Feb 14, 2001 1:38:53 PMFeb 14, 2001 1:38:53 PMbshulman@abacus.bates.edu8