Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Inactive » Historia-Matematica

Topic: [HM] question about term "normal"
Replies: 13   Last Post: Dec 7, 2006 4:19 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ] Topics: [ Previous | Next ]
Bruand Francois

Posts: 2
Registered: 12/3/04
Re: [HM] Cauchy
Posted: Dec 7, 2006 3:17 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


L'expression française "solution de continuité" est un faux ami et n'a pas
le sens auquel on pourrait s'attendre. Elle provient de la chirurgie et
a le sens d'interruption de la continuité ou de séparation. Il s'agit donc
en fait d'une discontinuité !

François Bruand, Yverdon-les-Bains (Suisse)


----- Original Message -----
From: "Gunnar Berg" <gunnar@math.uu.se>
To: <historia-matematica@chasque.apc.org>
Sent: Tuesday, November 14, 2006 4:52 PM
Subject: [HM] Cauchy


>
> Dear all.
> In perusing Cauchys "Cours d'analyse" (1821) I have come across the
> following (p.35):
>
> "Enfin, lorsqu'un fonction f(x) cesse d'etre continue dans le voisinage
> d'une valeur particuliere de la variable x, on dit qu'elle devient
> alors discontinue, et qu'il y a pour cette valeur particuliere
> solution de continuite."
>
> What puzzles me is the last phrase - "solution de continuite" -
> I simply cannot make any sense of it. What can Augustin-Louis mean?
> I look forward to hear from those whose knowledge of Cauchy and his
> times are more profound than mine.
>
> From Uppsala, deep in the gloom of November.
>
> Gunnar Berg
>
>





Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.