Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.symbolic.independent

Topic: A bug in Reduce package 'algint'?
Replies: 9   Last Post: Feb 1, 2013 6:02 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ] Topics: [ Previous | Next ]
clicliclic@freenet.de

Posts: 982
Registered: 4/26/08
Re: A bug in Reduce package 'algint'?
Posted: Jan 21, 2013 7:47 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


clicliclic@freenet.de schrieb:
>
> Wanting to refresh my knowledge of the capabilties of the Reduce algebra
> system, I have recently browsed the website. The system comes with the
> 'algint' package by J. Davenport which boosts the integrator
> capabilities for algebraic functions. The package documentation
>
> <http://www.reduce-algebra.com/docs/algint.pdf>
>
> introduces the example integrand sqrt(sqrt(a^2 + x^2) + x)/x. A correct
> antiderivative for this is
>
> 2*(sqrt(sqrt(a^2 + x^2) + x)
> - sqrt(a)*atanh(sqrt(sqrt(a^2 + x^2) + x)/sqrt(a))
> - sqrt(a)*atan(sqrt(sqrt(a^2 + x^2) + x)/sqrt(a)))
>
> The antiderivative printed in the documentation, however, is either very
> wrong or garbled beyond recognition.
>


I took another look and - the Reduce result printed in the documentation
is correct:

SQRT(a)*ATAN((SQRT(a)*SQRT(SQRT(a^2+x^2)+x)*SQRT(a^2+x^2)-SQRT(a~
)*SQRT(SQRT(a^2+x^2)+x)*a-SQRT(a)*SQRT(SQRT(a^2+x^2)+x)*x)/(2*a^~
2))+2*SQRT(SQRT(a^2+x^2)+x)+SQRT(a)*LOG(SQRT(SQRT(a^2+x^2)+x)-SQ~
RT(a))-SQRT(a)*LOG(SQRT(SQRT(a^2+x^2)+x)+SQRT(a))

DIF(SQRT(a)*ATAN((SQRT(a)*SQRT(SQRT(a^2+x^2)+x)*SQRT(a^2+x^2)-SQ~
RT(a)*SQRT(SQRT(a^2+x^2)+x)*a-SQRT(a)*SQRT(SQRT(a^2+x^2)+x)*x)/(~
2*a^2))+2*SQRT(SQRT(a^2+x^2)+x)+SQRT(a)*LOG(SQRT(SQRT(a^2+x^2)+x~
)-SQRT(a))-SQRT(a)*LOG(SQRT(SQRT(a^2+x^2)+x)+SQRT(a)),x)

[x:epsilonComplex,a:epsilonComplex]

SQRT(SQRT(x^2+a^2)+x)/x

as required (I had made a mistake inputting the pretty-printed result
into Derive). Sorry for that - but then it was this mistake what made me
find a more compact antiderivative!

Martin.



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.