Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Cantor's Faulty Induction Method
Replies: 1   Last Post: Mar 2, 2013 9:51 PM

 Graham Cooper Posts: 4,495 Registered: 5/20/10
Re: Cantor's Faulty Induction Method
Posted: Mar 2, 2013 9:51 PM

On Mar 3, 11:48 am, George Greene <gree...@email.unc.edu> wrote:
> On Mar 2, 3:54 pm, Graham Cooper <grahamcoop...@gmail.com> wrote:
>

> > Given a part of a LIST 3X3 digits
>
> > LIST DUMP
> > 0.223
> > 0.443
> > 0.776

>
> > An AD Function Exists that calculates a Missing Real 3 digits long
>
> You've got your TENSES backwards.
> This anti-diagonal function exists EVEN IF YOU ARE *NOT* given a 3x3
> list of
> digits.  The anti-diagonal function can operate on ANY list of lists
> with the property
> that its nth "row"-list  is at least n digits "wide" (long).  For ANY,
> EVERY, EACH, or ALL n.
> 3 simply has nothing to do with it.
> And the list does not have to have a last element, either.
> The function also operates correctly on lists that are infinitely
> long  -- in those cases,
> the result it returns is also infinitely long -- provided that every
> row-element-list on the
> big list is only finitely many rows away from the top.  I.e., provided
> that every row on the
> list is the nth row for some natural n.
>

I DON'T CARE WHAT YOUR OPINIONS ARE

WHEN I POST A PROOF!

YOU SAY YES OR NO 1ST

BY INDUCTION

ALL(n) ALL(LIST of SIZE n)
E(real) real =/= any row of LIST

-----------

WORK ON *THIS* PROOF BY INDUCTION