The Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » Inactive » comp.soft-sys.math.mathematica

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Minimize Headscratcher
Replies: 1   Last Post: May 6, 2013 2:24 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]

Posts: 5
Registered: 5/4/13
Minimize Headscratcher
Posted: May 4, 2013 3:17 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Re 8.0.4 under Windows 7.

f is a multivariate function in the variables found in "unknowns" below. Although not shown, f is the dot product of a vector with itself.

When I find the unconstrained minimum (over the reals) of f, Minimize returns an objective value of 902.528.

Yet when I add constraints, Minimize returns zero!

What is going on? Thanks.


f=4308.87\[VeryThinSpace]-2.2 \[Phi]-6.4` \[Gamma] \[Phi]-28.6` \[Gamma]^2 \[Phi]+\[Phi]^2+\[Gamma]^2 \[Phi]^2+\[Gamma]^4 \[Phi]^2-28.6` \[Psi]+2 \[Gamma]^2 \[Phi] \[Psi]+\[Psi]^2-28.6` \[Theta][1]+2 \[Gamma]^2 \[Phi] \[Theta][1]+2 \[Psi] \[Theta][1]+\[Theta][1]^2-110.8` \[Theta][2]+\[Theta][2]^2-7.4` \[Theta][3]+\[Theta][3]^2-2.2` \[Theta][4]+2 \[Phi] \[Theta][4]+\[Theta][4]^2+12.8` \[Gamma] \[Phi] \[Lambda][1]+55.2` \[Gamma]^2 \[Phi] \[Lambda][1]+55.2` \[Psi] \[Lambda][1]-110.8` \[Gamma]^2 \[Phi] \[Lambda][1]^2+\[Gamma]^2 \[Phi]^2 \[Lambda][1]^2+\[Gamma]^4 \[Phi]^2 \[Lambda][1]^2-110.8` \[Psi] \[Lambda][1]^2+2 \[Gamma]^2 \[Phi] \[Psi] \[Lambda][1]^2+\[Psi]^2 \[Lambda][1]^2+2 \[Gamma]^2 \[Phi] \[Theta][2] \[Lambda][1]^2+2 \[Psi] \[Theta][2] \[Lambda][1]^2+\[Gamma]^4 \[Phi]^2 \[Lambda][1]^4+2 \[Gamma]^2 \[Phi] \[Psi] \[Lambda][1]^4+\[Psi]^2 \[Lambda][1]^4-3.2` \[Phi] \[Lambda][2]-12.8`\[Gamma] \[Phi] \[Lambda][2]+25.6` \[Gamma] \[Phi] \[Lambda][1] \[Lambda][2]-7.4` \[Phi] \[Lambda][2]^2+\[Phi]^2 \[Lambda][2]^2+\[Gamma]^2 \[Phi]^2 \[Lambda][2]^2+2 \[Phi] \[Theta][3] \[Lambda][2]^2+\[Gamma]^2 \[Phi]^2 \[Lambda][1]^2 \[Lambda][2]^2+\[Phi]^2 \[Lambda][2]^4;






Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.