Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Help! Discrete Sine Transform & Hadamard Transform
Replies: 0

 Vincent Posts: 2 Registered: 12/12/04
Help! Discrete Sine Transform & Hadamard Transform
Posted: Jun 20, 1996 3:26 AM

Help! I have 2 questions about DST and WHT: (SUM means sigma)
1. If the coefficient formula of 2-D Discrete Sine Transform (DST) is

2 N-1 N-1 (j+1)*(u+1)*PI (k+1)*(v+1)*PI
F(u,v)= ----- SUM SUM f(j,k)sin{--------------}sin{--------------}
N+1 j=0 k=0 N+1 N+1

then what is formula of the inverse DST ? ( f(j,k)=? )

2. If the coefficient formula of 2-D Hadamard Transform ( WHT ) is

1 N-1 N-1 p(j,k,u,v)
F(u,v)= --- SUM SUM f(j,k)(-1)
N j=0 k=0

n-1 n
where p(j,k,u,v)= SUM ( u(i)*j(i) + v(i)*k(i) ), N=2
i=0

The terms u(i),v(i),j(i), and k(i) are the bit states of
the binary representations of u,v,j, and k, respectively.
e.g. u=12 , in binary form ==>1 1 0 0
u(3)=1, u(2)=1, u(1)=0, u(0)=0

What is the formula of inverse WHT? ( f(j,k)=? )

Thank you for answering my questions.

--
ÃÂÃÂ¡_ÃÂÃÂ¡_ ÃÂÃÂ¡_ÃÂÃÂ¡_ ÃÂÃÂ¡_ÃÂÃÂ¡_
ÃÂÃÂ¡ÃÂÃÂ½ÃÂÃÂ¡ÃÂÃÂ½ÃÂÃÂ¡ÃÂÃÂ½ ÃÂÃÂ¡] ÃÂÃÂ¡^ ÃÂÃÂ¡] ÃÂÃÂ¡^ ÃÂÃÂ¡] ÃÂÃÂ¡^
ÃÂÃÂ¡ÃÂÃÂ½ÃÂÃÂ¡ÃÂÃÂ½ ÃÂÃÂ¡`ÃÂÃÂ¡` ÃÂÃÂ¡`ÃÂÃÂ¡` ÃÂÃÂ¡`ÃÂÃÂ¡`
ÃÂÃÂ¢zÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢{ ÃÂÃÂ¢zÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢{
ÃÂÃÂ¢xÃÂÃÂ¼ÃÂÃÂ½ÃÂÃÂºÃÂÃÂÃÂÃÂ¤@ÃÂÃÂ­ÃÂÃÂÃÂÃÂµÃÂÃÂ½ÃÂÃÂ½t, ÃÂÃÂ§AÃÂÃÂ·|ÃÂÃÂ¦ÃÂÃÂ¬ÃÂÃÂÃÂÃÂ¬ÃÂÃÂ¤@ÃÂÃÂ¦ÃÂÃÂ¬ÃÂÃÂªÃÂÃÂ¾ÃÂÃÂ¤vÃÂÃÂ¢x==ÃÂÃÂ¢xVincent,u8111030@cc.nctu.edu.tw ÃÂÃÂ¢x
ÃÂÃÂ¢ÃÂÃÂ¨ÃÂÃÂ¢|ÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢} ÃÂÃÂ¢|ÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¡ÃÂÃÂ·ÃÂÃÂ¢wÃÂÃÂ¢wÃÂÃÂ¢}