|
Re: integral challenge (was: BesselI integral identity
Posted:
Mar 2, 2007 3:09 AM
|
|
In article <270220070817132851%edgar@math.ohio-state.edu.invalid>, "G. A. Edgar" <edgar@math.ohio-state.edu.invalid> wrote:
> > > > > Integrate[Exp[a x] BesselI[0, b Sqrt[1 - x^2]], {x, -1, 1}] == > > > > > 2 Sinh[Sqrt[a^2 + b^2]] / Sqrt[a^2 + b^2] > > Now that we have a reference, can someone show us how to > derive it using one of the CA programs?
I cannot obtain it directly using Mathematica. The best I have is this:
[1] BesselI[0, z] is a hypergeometric function:
Hypergeometric0F1[1, z^2/4] // FullSimplify
BesselI[0, z]
[2] Interchanging the order of summation and integration, the integrals can be computed
Assuming[ k >= 0, Integrate[Exp[a x] (b^2 (1 - x^2) / 4)^k, {x, -1, 1}] ] // FunctionExpand // Simplify
2^(1/2 - k) a^(-1/2 - k) b^(2 k) Sqrt[Pi] BesselI[1/2 + k, a] * Gamma[1 + k]
[3] The (hypergeometric) sum now reads
Sum[(b^2/(2 a))^k / k! (Sqrt[2 Pi/a] BesselI[k+1/2, a]), {k, 0, Infinity}]
And this sum can be derived from the generating function (Abramowitz and Stegun 10.2.31) by differentiation,
Sinh[Sqrt[z^2 + 2 t z]]/Sqrt[z^2 + 2 t z] == Sum[t^n /n! (Sqrt[2 Pi/z] BesselI[n + 1/2, z]), {n, 0, Infinity}]
Cheers, Paul
_______________________________________________________________________ Paul Abbott Phone: 61 8 6488 2734 School of Physics, M013 Fax: +61 8 6488 1014 The University of Western Australia (CRICOS Provider No 00126G) AUSTRALIA http://physics.uwa.edu.au/~paul
|
|