Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Book II of Al-Khayyam's Commentary on Euclid's Elements.
Replies: 5   Last Post: Jul 13, 2007 9:52 AM

 Messages: [ Previous | Next ]
 Robert (Bob) Eldon Taylor Posts: 101 Registered: 12/3/04
Book II of Al-Khayyam's Commentary on Euclid's Elements.
Posted: Jul 4, 2007 1:48 PM

Dear Friends,

I now continue my comments on Book II of Al Khayyam's Commentary on
Euclid's Elements. In book two, Khayyam attempts to revise the
definition of proportion for magnitudes given in E. book V. Recall
that Euclid gives two different definitions of ratio and proportion. In
book V, he develops a theory of proportions for continuous magnitudes
based on definitions attributed to Eudoxus (a contemporary of Plato).
In book VII he develops a theory of ratio and proportion for numbers
which is considered to be essentially Pythagorean. Ratio for the
Pythagoreans was a sort of sub-classification of inequality. Thus, of
two numbers:
they are equal, which case has no sub-divisions, or
they are not equal, which case has three sub-divisions:
the first is a multiple of the second, thus:
it is twice the second
it is thrice the second
etc.
or, the first is a part of the second,
i.e. it measures or divides it, thus:
it is half,
it is a third,
it is a quarter,
etc.
or, the first is parts of the second, thus:
it is two thirds,
it is three quarters,
it is two,
or three,
or four fifths,
it is five sixths,
etc.
Now you can see that every ratio of numbers must fall in one and only
one of these categories, and if two numbers fall in one of these
classes, and two different numbers also fall in the same class, they are
the _same_ ratio.

For us moderns, the third category would encompass the first two, but
that is not the Pythagorean way of thinking which is preserved in
Euclid. Also note that, strictly speaking, equality is not a ratio.

Every serious student of Euclid has probably wondered why he didn't
replace this Pythagorean definition of proportion for numbers given in
book VII by the definition of proportional magnitudes given in book V
(attributed to Eudoxus). But what Khayyam wants to do is the opposite,
and adapt the Pythagorean classification scheme for ratios of
magnitudes. This definition can easily be applied to commensurate
magnitudes, but for incommensurate magnitudes, another way must be
found. Khayyam uses an anthyphairetic definition, which he seems to
regard as intuitively obvious.

Why does he want to do this. It is hard to say but it seems to be what
I mentioned in my previous message on this subject, that he wants to
observe the ratio directly, as a fact. For he says "the ratio between
three and nine is the _fact_ of being one-third". He also raises the
following objection:

Do you not see that if a questioner inquires, saying: Four
magnitudes are proportional according to Euclidean
proportionality, and the first is the half of the second, will
the third then be the half of the fourth, or not?"

Since one can easily prove this from Eudoxus' definition, it seems that
Khayyam's objection is precisely that one _must_ prove it, that it is
not obvious, that is not clearly and directly observable, from the
definition.

The principle involved in the anthyphairetic technique is this: if two
unequal magnitudes have a common measure, there is a magnitude which
measures both and that magnitude measures also the difference. Using
the remainder and the smaller magnitude we can repeat the procedure as
many times as necessary until we come to the common measure. But, as
shown in Euclid X.2, if the given magnitudes are not commensurate, this
procedure will not come to an end because there is no common measure to
act as a unit to end the division of magnitudes.

His definition of "true" proportion is then as follows:

given four magnitudes, the first and second being commensurate, if
the first is the same part or parts of the second as the third is
of the fourth, they are in the same ratio.
(He calls this "numeric" proportion.)
But if the first and second are not commensurate, then if they
have the same anthyphairetic expansion as the third and
fourth, that is if the alternate subtractions are in the
same order and the same number of repetitions, then they
have the same ratio.
(He refers to this as "geometric" proportion.)

It would seem that the anthyphairetic part of the definition could cover
also numeric ratios, but this is not the Pythagorean mode of thought
which Khayyam follows.

He now proposes to alter Euclid's book V by adding certain postulates
and propositions in order that he may establish the equivalence of
"true" proportion and "common" proportion. Among these is a proof of
the existence of a fourth proportional, which he does by a sort of
"binary search". But one cannot find what is not to be found so it
seems to me he has assumed what he is required to prove, that is, given
three magnitudes there exists a fourth such that the first is to the
second as the third is to that fourth.

He then introduces book V proposition 1 which is required and can be
proved here, but neglects to mention book V proposition 2 which is also
needed, but only assumes it. He then establishes the equivalence of
"true" and "common" proportion, which, because of his definition must be
in "cases". That is, in the case of "numeric" proportions, he shows
that true proportionality implies common proportionality and conversely.
Then in the case of "geometric" proportion, common proportionality
implies true proportionality and conversely.

The anthyphairetic expansion of a ratio corresponds to a so-called
simple continuous fraction. These are notoriously intractable, however
useful they may be in certain applications. One cannot define addition,
subtraction, much less multiplication or division except by collapsing
the continued fraction into a common fraction or an infinite sequence of
approximations. It will be very difficult then to prove anything using
an anthyphairetic definition, so we will depend on the equivalence of
"true" and "common" proportionality to use the latter for any purpose we
may have for proportions. This is why it is important for Khayyam to
establish this equivalence.

The question then is why Khayyam wants to introduce this definition? I
have attempted to answer this above, that he looks for direct intuitive
understanding. But does he find it? Is his anthyphairetic technique
clearer and more intuitive than Euclid's? I suspect not. I am not
unsympathetic with his motives (if these are his motives). Mathematical
proofs, even when one has followed them through completely, often seem
unsatisfactory. One is forced to admit each step and at the end the
truth of the whole, but with no understanding _why_ it is so. But how
can we make progress while waiting for a why which may never come?

So I think the Old Tent Maker is tilting at windmills, and let's leave
it at that.

Regards,
Bob
Robert Eldon Taylor
philologos at mindspring dot com

Date Subject Author
7/4/07 Robert (Bob) Eldon Taylor
7/5/07 Venedem
7/6/07 Robert (Bob) Eldon Taylor
7/6/07 Venedem
7/13/07 Don Cook