Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.symbolic.independent

Topic: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Replies: 26   Last Post: Jun 20, 2010 7:24 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
apovolot@gmail.com

Posts: 73
Registered: 9/4/08
Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)

Posted: Jun 20, 2010 7:24 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

The question was probing to see whether Derive or any other symbolic
utility are able to solve
similar problems using built in mechanisms - without much of manual
intervention.


Date Subject Author
5/25/10
Read sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
5/26/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
G. A. Edgar
5/26/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/1/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/6/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/7/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/7/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/7/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Axel Vogt
6/7/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/8/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Axel Vogt
6/8/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/9/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Axel Vogt
6/10/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/16/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/16/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/17/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/17/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Axel Vogt
6/17/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/17/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/18/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/18/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/19/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de
6/19/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n) +1/(Pi*n+1)),n=0...infinity)
Axel Vogt
6/20/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/9/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/9/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
apovolot@gmail.com
6/9/10
Read Re: sum(1/(a)^(n)* 1/((Pi*n) +1/(Pi*(n+1)))^((Pi*n)
+1/(Pi*n+1)),n=0...infinity)
clicliclic@freenet.de

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.