Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Re: Help to solve an integral by using Mathematica Integrate[Sqrt[t
Replies: 4   Last Post: Dec 2, 2010 5:44 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Hugo

Posts: 5
Registered: 9/30/10
Re: Help to solve an integral by using Mathematica Integrate[Sqrt[t
Posted: Oct 2, 2010 5:46 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Valeri,

Suggested solution is very close to solution found in book. How did
you get it? Please, let me know how did you implement this integral.

Thanks,

Hugo


On Oct 1, 5:03 am, Valeri Astanoff <astan...@gmail.com> wrote:
> On 1 oct, 11:42, Leonid Shifrin <lsh...@gmail.com> wrote:
>
>
>
>
>

> > To my surprise, Mathematica has been very reluctant to help here, despite
> > the
> > seemingly simple form of the integral. Here is what I did anyway:

>
> > 1. Find an indefinite integral:
>
> > In[94]:= expr = Integrate[Sqrt[t (1 - t) (z - t)], t]
>
> > Out[94]= (Sqrt[(-1 + t) t (t - z)] (2 t (-1 + 3 t - z) + (
> > 2 (-1 + t) (-((2 t (t - z) (1 - z + z^2))/(-1 + t)^2) - (
> > 2 I Sqrt[t/(-1 + t)] Sqrt[(
> > t - z)/(-1 + t)] (1 - z + z^2) EllipticE[
> > I ArcSinh[1/Sqrt[-1 + t]], 1 - z])/Sqrt[-1 + t] + (
> > I Sqrt[t/(-1 + t)] Sqrt[(t - z)/(-1 + t)]
> > z (1 + z) EllipticF[I ArcSinh[1/Sqrt[-1 + t]], 1 - z])/
> > Sqrt[-1 + t]))/(t - z)))/(15 t)

>
> > 2. Find a limit on the lower and (at zero):
>
> > In[95]:= expr0 = Limit[expr , t -> 0]
>
> > Out[95]= -(2/ 15) I (2 (1 - z + z^2) EllipticE[1 - z] -
> > z (1 + z) EllipticK[1 - z])

>
> > 3. Make a substitution z->t-q in the indefinite integral result:
>
> > In[96]:= expr1 = expr /. z -> t - q
>
> > Out[96]= (Sqrt[
> > q (-1 + t) t] (2 t (-1 + q + 2 t) + (
> > 2 (-1 + t) (-((2 q t (1 + q - t + (-q + t)^2))/(-1 + t)^2) - (
> > 2 I Sqrt[q/(-1 + t)] Sqrt[
> > t/(-1 + t)] (1 + q - t + (-q + t)^2) EllipticE[
> > I ArcSinh[1/Sqrt[-1 + t]], 1 + q - t])/Sqrt[-1 + t] + (
> > I Sqrt[q/(-1 + t)] Sqrt[
> > t/(-1 + t)] (-q + t) (1 - q + t) EllipticF[
> > I ArcSinh[1/Sqrt[-1 + t]], 1 + q - t])/Sqrt[-1 + t]))/
> > q))/(15 t)

>
> > 4. Simplify it:
> > In[97]:= expr2 = FullSimplify[expr1, t > 0 && t < 1 && q > 0 && q <=

1=
> ]
>

> > Out[97]= (Sqrt[
> > q (-1 + t) t] (-((2 t (1 + q (3 + 2 q - 5 t) + t))/(-1 + t)) - (
> > 2 I t (2 (1 + q + q^2 - 2 q t + (-1 + t) t) EllipticE[
> > I ArcCoth[Sqrt[t]],
> > 1 + q - t] - (-1 + q - t) (q - t) EllipticF[
> > I ArcCoth[Sqrt[t]], 1 + q - t]))/Sqrt[q (-1 + t) t]))/(15 t)

>
> > 5. Get the result for the upper end by substituting q->0 and then t->z:
>
> > In[98]:= expr3 = (expr2 // Apart) /. q -> 0 /. t -> z
>
> > Out[98]= -(4/15) I EllipticE[I ArcCoth[Sqrt[z]], 1 - z] -
> > 2/15 I z^2 (2 EllipticE[I ArcCoth[Sqrt[z]], 1 - z] -
> > EllipticF[I ArcCoth[Sqrt[z]], 1 - z]) +
> > 2/15 I z (2 EllipticE[I ArcCoth[Sqrt[z]], 1 - z] +
> > EllipticF[I ArcCoth[Sqrt[z]], 1 - z])

>
> > 6. Get the final result:
>
> > In[99]:= expr4 = FullSimplify[expr3 - expr0]
>
> > Out[99]=
> > 2/15 I (2 (1 + (-1 + z) z) EllipticE[1 - z] -
> > 2 (1 + (-1 + z) z) EllipticE[I ArcCoth[Sqrt[z]], 1 - z] +
> > z (1 + z) (EllipticF[I ArcCoth[Sqrt[z]], 1 - z] -
> > EllipticK[1 - z]))

>
> > Now, it turns out that the sign is wrong. All my attempts to verify the
> > correctness of
> > this analytically failed (I did not try too hard though). Neither was I able
> > to reduce it
> > to the manifestly real form.

>
> > The final form of the result is then (correcting the sign and taking the
> > real part):

>
> > exprint[z_] :=
> > Re[-(2/15)
> > I (2 (1 + (-1 + z) z) EllipticE[1 - z] -
> > 2 (1 + (-1 + z) z) EllipticE[I ArcCoth[Sqrt[z]], 1 - z] +
> > z (1 + z) (EllipticF[I ArcCoth[Sqrt[z]], 1 - z] -
> > EllipticK[1 - z]))];

>
> > I did compare it to the result of numerical integration:
>
> > exprintN[z_?NumericQ] :=
> > NIntegrate[Sqrt[t (1 - t) (z - t)], {t, 0, z}]

>
> > Plot[{exprint[z], exprintN[z]}, {z, 0, 1}]
>
> > Plot[{exprint[z] - exprintN[z]}, {z, 0, 1}]
>
> > And they seem to agree, but that's about all I could squeeze out of it.
>
> > Hope this helps.
>
> > Regards,
> > Leonid

>
> > On Thu, Sep 30, 2010 at 12:51 PM, Hugo <hpe650...@gmail.com> wrote:
> > > Could anybody help me to implement this integral in Mathematica?
> > > Integrate[Sqrt[t (1-t) (z-t)],{t,0,z}] where z and t are real with
> > > intervals 0<t<1 and 0<z<1. I'd really appreciate any help for this
> > > problem.- Masquer le texte des messages pr=E9c=E9dents -

>
> > - Afficher le texte des messages pr=E9c=E9dents -
>
> I suggest this form :
>
> (1/15)*(4*(1 + (z-1)*z)*EllipticE[z] - 2*(2 + (z-3)*z)*EllipticK[z])
>
> v.a.






Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.