Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Partial order and topology
Replies: 7   Last Post: Sep 16, 2011 6:25 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Stephen J. Herschkorn

Posts: 2,297
Registered: 1/29/05
Partial order and topology
Posted: Sep 13, 2011 11:45 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

I have only seen the order topology defined for a totally ordered set,
but it can be defined for partial orders as well:

Let X be a partially ordered set. Define the order topology to be that
generated by {{x in X: x < a}, {x in X: x > a}: a in X}.

Two questions:
- If X and Y are partially ordered sets that are homeomorphic under
order topologies, are X and Y necessarily order-isomorphic?
- Is it true that any space can be given a partial order such that the
topology is the order topology?

--
Stephen J. Herschkorn sjherschko@netscape.net
Math Tutor on the Internet and in Central New Jersey and New York



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.