
Re: polarplot with arrow bearing tickmarks
Posted:
Jul 11, 2012 2:22 AM


(* Some clues to drawing tick marks can be had by examining the output of InputForm[FullGraphics[graphics]] and FullAxes[graphics]. *)
(* (1) Drawback with this method is Scaled[0.958] for the Inset element which is based on getting the commentedout Circle[{0,0},10]'s to align by guessing at the value 0.958 *)
PolarPlot[ 1/(10*Sin[t]^4 + 1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, PlotRange > All, PlotStyle > {{Red, AbsoluteThickness[4]}}, Ticks > None, Epilog > {(*Circle[{0,0},10],*) Inset[Graphics[{(*Circle[{0,0},10],*)Arrowheads[0.04*2], Arrow[{{0, 0 }, {10, 0}}]}, Axes > {True, False}, AspectRatio > 2, PlotRange > {{0, 10}, {10, 10}}], {0, 0}, {0, 0}, Scaled[0.958], {Cos[#], Sin[#]} &[30 °]]}]
(* (2) Here is a roll your own tick marks method which matches closely to the output of (1) above *)
tl = 0.05; PolarPlot[ 1/(10*Sin[t]^4 + 1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, PlotRange > All, PlotStyle > {{Red, AbsoluteThickness[4]}}, Ticks > None, Epilog > GeometricTransformation[{Arrow[{{0, 0}, {10, 0}}], Line[{{#, 0}, {#, Piecewise[{{4 tl, # == 0}, {3 tl, # == 1}}, 2 tl] &[Mod[#, 2]]}} & /@ FindDivisions[{0, 10}, 20]], Text[Style[#, FontFamily > "Times"], {#, 1/8}, {0, 1}] & /@ Range[0, 10, 2]}, RotationTransform[30 °]]]
Hope this helps...
"van zano" <L.Balzano@gmail.com> wrote in message news:jt8vhd$k3k$1@smc.vnet.net... > dear all, > I would like to decorate this polarplot with an arrow that starts at the origin and moves outwards at a certain angle (phi). it would be great if the arrow could also have tickmarks. > does anyone have a solution? > > PolarPlot[ > 1/(10*Sin[t]^4 + 1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + > 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, > PlotRange > All, > PlotStyle > {{Red, AbsoluteThickness[4]}}] > > thanks! L >

