Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.num-analysis.independent

Topic: Ea := -69767/9450*Pi+3239/62370*sqrt(2)+524/315*Pi*sqrt(3)*sqrt(5)+12301/1260*Pi*ln(2)-1859/90*ln(2)-1892/945*Pi^2-768/35*sqrt(2)*Pi*arcsin(1/3)+1584/35*Pi*sqrt(3)*arcsin(1/4)+3/4*arcsin(1/3)*ln(2)+568/3465*sqrt(3)+12094/6237*sqrt(5)-16*Int(s^2*ar
Replies: 0  

Advanced Search

Back to Topic List Back to Topic List  


Posts: 821
Registered: 9/1/10
Ea := -69767/9450*Pi+3239/62370*sqrt(2)+524/315*Pi*sqrt(3)*sqrt(5)+12301/1260*Pi*ln(2)-1859/90*ln(2)-1892/945*Pi^2-768/35*sqrt(2)*Pi*arcsin(1/3)+1584/35*Pi*sqrt(3)*arcsin(1/4)+3/4*arcsin(1/3)*ln(2)+568/3465*sqrt(3)+12094/6237*sqrt(5)-16*Int(s^2*ar
Posted: Nov 1, 2012 4:14 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Ea := -69767/9450*Pi
+3239/62370*sqrt(2)+524/315*Pi*sqrt(3)*sqrt(5)+12301/1260*Pi*ln(2)-1859/90*ln(2)-1892/945*Pi^2-768/35*sqrt(2)*Pi*arcsin(1/3)+1584/35*Pi*sqrt(3)*arcsin(1/4)+3/4*arcsin(1/3)*ln(2)+568/3465*sqrt(3)+12094/6237*sqrt(5)-16*Int(s^2*arcsin(1/
(1+s))*arccos(1/(s-1)), s = 2 .. 3)-8*Int((1+s)*s^(3/2)*arcsin(1/
(1+s))*arccos((s-3)/(s-1)), s = 2 ..
3)-471683/10080*ln(3)+293/140*Pi*ln(3)+448/9*Pi*arcsin(1/4)+347117/5544+7/1080*ln(1+sqrt(2))-1/1080*ln(sqrt(2)-1)-1934/315*Pi*ln(4+sqrt(5)*sqrt(3))
+1/180*ln(3+2*sqrt(2))-3/2*Int(ln(sqrt(s)+sqrt(s-1))/
((1+s)*sqrt(s)*sqrt(2+s)), s = 1 .. 2)-3433/420*ln(2+sqrt(3))
+1171/70*ln(sqrt(2)+sqrt(2)*sqrt(3))-9*int(ln(sqrt(3+s^2)+1)/(1+s^2),
s = 0 ..
1)-2/63*ln(sqrt(3)-1)+1/56*Pi*ln(sqrt(2)-1)-12272/945*ln(sqrt(5)+1)+64/189*ln(sqrt(5)-1)+2/9*ln(1+sqrt(3))
+334/35*Pi*ln(2+sqrt(3))+6*arcsin(1/4)*ln(2+sqrt(3))
+28/9*Pi*ln(2*sqrt(3)-3)-Int(ln(sqrt(s)+sqrt(1+s))/
((s-1)*sqrt(s)*sqrt(s-2)), s = 2 .. 3)+32/7*sqrt(3)*arctan(4-
sqrt(5)*sqrt(3))
+16/35*Pi*ln(sqrt(5)-1)+544/315*Pi*arctan(sqrt(5)*sqrt(3))
+3457/35*sqrt(2)*arctan(sqrt(2))-4*Int(ln(2+s)/(s*sqrt(s-1)), s = 1 ..
2)+1/2*Int(ln(1+s)/(s*sqrt(s-1)), s = 1 ..
2)-6*ln(2)*arctan(1/4*sqrt(2))-347/840*Pi*ln(1+sqrt(3))
+2503/315*ln(3+sqrt(5))-63/5*sqrt(2)*arctan(1/4*sqrt(2))-92/105*ln(sqrt(5)+1)*Pi-16*Int(s^(5/2)*arcsin(1/
(1+s))*arctan(sqrt(s-1)), s = 1 .. 2)-12/7*Int(s^(7/2)*arccos(1/(s-1))/
(sqrt(1+s)*(1+sqrt(1+s))), s = 2 ..
3)-6353/1575*Pi*sqrt(3)+1/84*Pi*ln(7+4*sqrt(3))-28/9*Pi*ln(4*sqrt(5)*sqrt(3)-15)-3/56*ln(1+sqrt(2))*Pi
+12/7*Int(s^3*ln(s)/((s-1)*sqrt(s-2)), s = 2 ..
3)-1/210*Int((139-1470*s^2+315*s^4-420*s^3-420*s)*arccos(1/sqrt(s-1))/
(sqrt(2+s)*(sqrt(2+s)+1)), s = 2 ..
3)+1/14*Int((21*s^4+28*s^3-1)*arccos(1/sqrt(s-1))/
(sqrt(1+s)*(1+sqrt(1+s))), s = 2 ..
3)-3559/84*sqrt(2)*Pi-56/9*Pi*ln(sqrt(2)+sqrt(2)*sqrt(3))
+4/105*Int(s^(3/2)*(-35-126*s+45*s^2)*arccos(1/(s-1))/
(sqrt(2+s)*(sqrt(2+s)+1)), s = 2 .. 3)+1088/105*Int(arctan(sqrt(s))/
((s-1)*sqrt(s)*sqrt(s-2)), s = 2 ..
3)-28/9*Pi*ln(2*sqrt(3)+3)-1/56*Pi*ln(3+2*sqrt(2))-4093/630*arcsin(1/3)*sqrt(2)-4*ln(sqrt(3)+sqrt(5))*Pi-3/2*ln(2)*arctan(sqrt(2))
+12*Int(ln(sqrt(s)+sqrt(s-2))/((1+s)*sqrt(s)*sqrt(2+s)), s = 2 ..
3)+132/7*sqrt(3)*arcsin(1/4)-6*ln(2)*arctan(sqrt(5)*sqrt(3))-3/4*arcsin(1/3)*ln(3+2*sqrt(2))
+28/9*Pi*ln(4*sqrt(5)*sqrt(3)+15)+712/105*sqrt(3)*arctan(sqrt(5)*sqrt(3))
+23/280*Pi*ln(sqrt(3)-1)+244/35*Pi*sqrt(5)-4/105*Int(s*(-35-126*s
+45*s^2)*ln(1+s)/((s-1)*sqrt(s-2)), s = 2 .. 3)+12*Int(ln(sqrt(s)
+sqrt(2+s))/((s-1)*sqrt(s)*sqrt(s-2)), s = 2 .. 3);



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.