Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
NCTM or The Math Forum.



PolynomialQuotient slow
Posted:
Dec 31, 2012 7:45 PM


Something seems wrong here with the performance of PolynomialQuotient. Is there blowup because the leading coefficient in x is a polynomial? Also it seems slower in Mathematica 9 versus v8.
d = 5 f = Expand[ ((1+x)*(1+y)*(1+z))^d + 1 ]; g = Expand[ ((1x)*(1y)*(1z))^d + 1 ]; AbsoluteTiming[ p = Expand[ f g ]; ] AbsoluteTiming[ q = PolynomialQuotient[p, f, x]; ] AbsoluteTiming[ P = Factor[ p ]; ]
What is the preferred method for (exact) division of polynomials? On this example I tried Cancel[ p/f ] and it works fine, but on other problems it is faster to use PolynomialQuotient. Suggestions?



