Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Education » math-learn

Topic: [math-learn] middle school math problems
Replies: 11   Last Post: Jan 18, 2013 9:58 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Ed Wall

Posts: 837
Registered: 12/3/04
Re: [math-learn] middle school math problems
Posted: Jan 18, 2013 9:58 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply
att1.html (23.0 K)

Ze'ev

Thanks for this. I now see where the claim that these problems are age-appropriate might have originated.

I agree. Bracketing the 'vocabulary,' a good bit of the difficulty can be recognizing the significance of the math within a problem. Oddly though it might also be attributed to reluctance to take a first, perhaps tottering step. in the geometry problem you refer to, a first step could be just sketching in the center and connecting points. Then all you need do is realize you have an isosceles triangle and make the 'obvious' connection with the construction of a perpendicular bisector.

Ed

On Jan 18, 2013, at 4:09 PM, Ze'ev Wurman wrote:

> It is true that *some* of the problems require some level of
> understanding of geometry, and that hyperbola is typically mentioned in
> Algebra 2, yet we should distinguish between studying a topic and simply
> mentioning it in the course of earlier study, or situating a problem
> *within* a geometrical context, even if there is little geometry per-se
> in the problem. For example, hyperbola could have been mentioned earlier
> and one really doesn't need to know anything about it except that it
> represent a graph of xy=a, as is stated in the problem. All the rest can
> be easily derived as a part of the problem solution. Similarly, one does
> not need to formally study the triangle inequality to observe in a
> classroom -- typically in much earlier grade -- the nature of this
> inequality. (Incidentally, the Common Core places it in grade 7,
> standard 7G2.) Similarly, while proving that the center of a circle lies
> on a perpendicular bisector of a chord may be an early Geometry theorem
> studied in 9th grade, any student who studies any type of construction
> with straightedge and compass in earlier grades should be familiar with
> this non-proven fact. (Common Core defers all constructions to high
> school while, for example, California pre common-core expected them in
> grade 7, standards 7.MG.3.1).
>
> What makes these problems often seem complex is that they expect the
> student to follow the logic of few basic facts -- which he is typically
> supposed to be familiar with -- to solve a 2-3 step problem, paying
> attention to the math as clearly defined *within* the problem. What our
> students are most often trained to do (pun intended) is to recognize a
> problem as one of a class and recall the technique for its solution,
> rather than follow the math as defined in the problem itself wherever it
> leads. THAT is what makes them difficult, not whether the student ever
> heard the word "hyperbola" before. The graph could have been called a
> "sausage" for all it matters, defined as y=a/x.
>
> Ze'ev
>
> On 1/18/2013 12:07 PM, Ed Wall wrote:

>>
>> Dennis
>>
>> Thanks for this.
>>
>> That seems to dovetail with my 'ancient' middle school teaching
>> experiences. However, there has been talk since then of pushing
>> Algebra 1 down into middle school and I know that in some places
>> Algebra and Geometry are, insofar as textbooks are concerned, somewhat
>> integrated. Thus I was wondering.
>>
>> Ed
>>
>> On Jan 18, 2013, at 2:50 PM, starcap50@aol.com
>> <mailto:starcap50%40aol.com> wrote:
>>

>>> Sorry for the double link to the 2010 Virginia Standards of Learning
>> (SOL)
>>> 8th Grade Mathematics Test.
>>>
>>> The first one does not work.
>>>
>>> The second one does.
>>>
>>> All The Best,
>>>
>>> Dennis
>>>
>>>
>>> In a message dated 1/18/2013 2:39:04 P.M. Eastern Standard Time,
>>> starcap50@aol.com <mailto:starcap50%40aol.com> writes:
>>>
>>>
>>>
>>>
>>> Hello Ed,
>>>
>>> My reason for assessing the sample problems as "advanced" is that their
>>> level of difficulty and prerequisite knowledge for solving them are far
>>> beyond the standards for any middle school math curriculum I have ever
>>> worked
>>> with in the state of Virginia since my retirement in 2005.
>>>
>>> In the state of Virginia, students who,are enrolled in middle school

>> are
>>> usually enrolled in Grades 6,7, and 8. Students usually begin high
>> school
>>> in Grade 9.
>>>
>>> In Virginia, the "average" student takes Algebra 1 in the 9th grade,
>>> Geometry in the 10th grade, and Algebra 2 in the 11th grade. Above

>> average
>>> students usually take Algebra 1 in the 8th grade (the last year of
>> middle
>>> school), Geometry in the 9th grade, and Algebra 2 in the 10th grade.
>>>
>>> A small minority of highly advanced students can take Algebra 1 in

>> the 7th
>>> grade, Geometry in the 8th grade, and Algebra 2 in the 9th grade. At
>> the
>>> middle school where I taught before I retired in 2005, however,
>> Algebra 1
>>> was not yet available for 7th grade students.
>>>
>>> In the set of problems presented, problem #42 involves the hyperbola,
>>> which
>>> is not taught in the state of Virginia until Algebra 2, which most
>>> students take in either the 10th or the 11th grade in high school.

>> Having
>>> tutored
>>> students privately for the past several years, I have not seen the
>>> hyperbola presented in any math course curriculum until Algebra 2 is

>> taken.
>>>
>>> Problem #41 involves the construction of a circle within given

>> parameters,
>>> which is a topic covered in Geometry. Most students take Geometry in
>>> either the 9th or 10th grade in high school. Only a small minority of
>>> students
>>> take Geometry in 8th grade, which is the last year of middle school

>> in the
>>> state of Virginia. Problem #39 involves the Triangle Inequality
>> Theorem,
>>> which is also not covered until Geometry.
>>>
>>> The following is a link to a pdf copy of the 2010 Virginia Standards of
>>> Learning (SOL) Test for 8th Grade Mathematics:
>>>
>>>

>> __http://www.doe.virginia.gov/testing/sol/released_tests/2010/test10_math8.p
>>> d_
>>>

>> (http://www.doe.virginia.gov/testing/sol/released_tests/2010/test10_math8.pd)
>>

>>> f_
>>>

>> (_http://www.doe.virginia.gov/testing/sol/released_tests/2010/test10_math8.p
>>> df_
>>>

>> (http://www.doe.virginia.gov/testing/sol/released_tests/2010/test10_math8.pdf)
>> )

>>>
>>> If this link opens, you will see a fair representation of the level of
>>> problems which are taught in the 8th grade, which is the last year of
>>> middle
>>> school in the state of Virginia.
>>>
>>> Speaking from the trenches, and based upon my nearly 30 years of

>> teaching
>>> and tutoring combined, for whatever it may be worth, the sampling of
>>> problems presented in the "Five Triangles" blog website more closely
>>> resemble
>>> advanced problems on the high school level than on the middle school

>> level.
>>>
>>> Best Wishes,
>>>
>>> Dennis
>>>
>>>
>>> In a message dated 1/18/2013 12:21:42 P.M. Eastern Standard Time,
>>> _ewall@umich.edu <mailto:_ewall%40umich.edu>_

>> (mailto:ewall@umich.edu <mailto:ewall%40umich.edu>) writes:
>>>
>>>
>>>
>>>
>>> Dennis
>>>
>>> While I haven't taught middle school since 1995, some of these problems
>>> seem to call on knowledge which isn't in the repertoire of the

>> average 8th
>>> grader and, in some cases, the average 9th grader. I'd be interested in
>>> what
>>> others, currently involved in middle school mathematics teaching,

>> think.
>>> Putting all that aside, these problems do seem accessible to a
>> student who
>>> is versed in Algebra I and Geometry, so I'm wondering why you think
>> them
>>> for advanced students (I don't say they aren't, by the way). Some of
>> these
>>> problems do require some careful thinking and, perhaps, even more
>>> importantly an investment of solution time. Is this what you are

>> pointing
>>> at?
>>> I looked through the archives, by the way. The quality of problems

>> vary as
>>> to difficulty and - this is a personal judgement - appeal. I wish I had
>>> known about it before as I teach course for teachers-to-be and some

>> of the
>>> problems are nice. I rather liked the geometric construction in the
>>> original
>>> email as I just spent a semester grumbling about student performance on
>>> such.
>>>
>>> Ed Wall
>>>
>>> On Jan 17, 2013, at 10:36 PM, __starcap50@aol.com

>> <mailto:__starcap50%40aol.com>_
>>> (mailto:_starcap50@aol.com <mailto:_starcap50%40aol.com>) _
>>> (mailto:_starcap50@aol.com <mailto:_starcap50%40aol.com>_

>> (mailto:starcap50@aol.com <mailto:starcap50%40aol.com>) ) wrote:
>>>
>>>> Yikes! I taught middle school mathematics for 22 years (1983-2005)
>> and I
>>>
>>>

>>>> have never seen any middle school math problems quite this difficult
>>>> before. Are these for advanced middle school aged students?
>>>>
>>>> I now do private tutoring for high school students taking Algebra 1,
>>>> Geometry, and Algebra 2, and these problems appear to be on the

>> advanced
>>> level
>>>> for even these subjects.
>>>>
>>>> Dennis
>>>>
>>>>

>>
>
>
>
> [Non-text portions of this message have been removed]
>
>
>
> ------------------------------------
>
> Yahoo! Groups Links
>
>
>





Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.