Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: A Random LIST several magnitudes larger than the BASE
Replies: 0

 Graham Cooper Posts: 4,495 Registered: 5/20/10
A Random LIST several magnitudes larger than the BASE
Posted: Mar 2, 2013 10:10 PM

Once a Random List of digits is 200% - 1000% larger than the base.

e.g.
LIST [20X20]

0.37465647474747462382827..
0.29834746738373647484949..
0.19387456756483483474738..
0.59848373636512738484837..
0.05696784836261626373838..
0.12121213243454355434323..
0.76654543241231232334244..
0.90909489947834894389342..
0.12324498489328932893473..
0.07089786874736226377334..
0.33498598548934893893409..
0.05056948743873278132873..
0.11128939832489429855334..
0.05495894387328732323223..
0.32894894893489437845342..
0.84834783487348736362211..
0.12673263284398439845895..
0.04589548934783431221211..
0.75747483832892912923834..

P-->1 that EXIST(L') a permutation (out of 20! possible)
s.t. the DIAGONAL sequence is ANY possible digit sequence
N-1 digits long!

e.g. the 19 long digit string
0.5555566666555556666

is the DIAGONAL (less the final digit) of some permutation L'

As size(L) --> oo
P=1
There is a permutation L' for every possible
digit string on the DIAGONAL
and hence *every* possible ANTI-DIAGONAL

Herc