Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Elimination problem
Replies: 1   Last Post: Apr 1, 2013 12:56 AM

 Messages: [ Previous | Next ]
 Francisco Javier Posts: 12 Registered: 5/29/08
Elimination problem
Posted: Mar 19, 2013 12:04 AM

Dear friends,

How much possible is to eliminate m,n from the equations below?

{X == -(b - c) (b + c) (a^2 b^2 c^2 m^3 + 3 a^2 b^2 c^2 m^2 n -b^4 c^2 m^2
n - b^2 c^4 m^2 n + a^6 m n^2 - 2 a^4 b^2 m n^2 +
a^2 b^4 m n^2 - 2 a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 - 2 b^4 c^2 m
n^2 + a^2 c^4 m n^2 - 2 b^2 c^4 m n^2 + a^6 n^3 -
a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4 c^2 n^3 + 2 a^2 b^2 c^2 n^3
- b^4 c^2 n^3 - a^2 c^4 n^3 - b^2 c^4 n^3 + c^6 n^3),
Y == (a - c) (a + c) (a^2 b^2 c^2 m^3 - a^4 c^2 m^2 n + 3 a^2 b^2 c^2 m^2
n - a^2 c^4 m^2 n + a^4 b^2 m n^2 -
2 a^2 b^4 m n^2 + b^6 m n^2 - 2 a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 -
2 b^4 c^2 m n^2 - 2 a^2 c^4 m n^2 +
b^2 c^4 m n^2 + a^6 n^3 - a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4
c^2 n^3 + 2 a^2 b^2 c^2 n^3 - b^4 c^2 n^3 - a^2 c^4 n^3 -
b^2 c^4 n^3 + c^6 n^3),
Z == -(a - b) (a + b) (a^2 b^2 c^2 m^3 - a^4 b^2 m^2 n - a^2 b^4 m^2 n + 3
a^2 b^2 c^2 m^2 n - 2 a^4 b^2 m n^2 -
2 a^2 b^4 m n^2 + a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 + b^4 c^2 m n^2
- 2 a^2 c^4 m n^2 - 2 b^2 c^4 m n^2 + c^6 m n^2 +
a^6 n^3 - a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4 c^2 n^3 + 2 a^2
b^2 c^2 n^3 - b^4 c^2 n^3 - a^2 c^4 n^3 - b^2 c^4 n^3 +
c^6 n^3)}

--
---
Francisco Javier Garc=EDa Capit=E1n
http://garciacapitan.99on.com

Date Subject Author
3/19/13 Francisco Javier
4/1/13 Francisco Javier