Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Elimination problem
Replies: 1   Last Post: Apr 1, 2013 12:56 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Francisco Javier

Posts: 12
Registered: 5/29/08
Elimination problem
Posted: Mar 19, 2013 12:04 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Dear friends,

How much possible is to eliminate m,n from the equations below?

{X == -(b - c) (b + c) (a^2 b^2 c^2 m^3 + 3 a^2 b^2 c^2 m^2 n -b^4 c^2 m^2
n - b^2 c^4 m^2 n + a^6 m n^2 - 2 a^4 b^2 m n^2 +
a^2 b^4 m n^2 - 2 a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 - 2 b^4 c^2 m
n^2 + a^2 c^4 m n^2 - 2 b^2 c^4 m n^2 + a^6 n^3 -
a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4 c^2 n^3 + 2 a^2 b^2 c^2 n^3
- b^4 c^2 n^3 - a^2 c^4 n^3 - b^2 c^4 n^3 + c^6 n^3),
Y == (a - c) (a + c) (a^2 b^2 c^2 m^3 - a^4 c^2 m^2 n + 3 a^2 b^2 c^2 m^2
n - a^2 c^4 m^2 n + a^4 b^2 m n^2 -
2 a^2 b^4 m n^2 + b^6 m n^2 - 2 a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 -
2 b^4 c^2 m n^2 - 2 a^2 c^4 m n^2 +
b^2 c^4 m n^2 + a^6 n^3 - a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4
c^2 n^3 + 2 a^2 b^2 c^2 n^3 - b^4 c^2 n^3 - a^2 c^4 n^3 -
b^2 c^4 n^3 + c^6 n^3),
Z == -(a - b) (a + b) (a^2 b^2 c^2 m^3 - a^4 b^2 m^2 n - a^2 b^4 m^2 n + 3
a^2 b^2 c^2 m^2 n - 2 a^4 b^2 m n^2 -
2 a^2 b^4 m n^2 + a^4 c^2 m n^2 + 4 a^2 b^2 c^2 m n^2 + b^4 c^2 m n^2
- 2 a^2 c^4 m n^2 - 2 b^2 c^4 m n^2 + c^6 m n^2 +
a^6 n^3 - a^4 b^2 n^3 - a^2 b^4 n^3 + b^6 n^3 - a^4 c^2 n^3 + 2 a^2
b^2 c^2 n^3 - b^4 c^2 n^3 - a^2 c^4 n^3 - b^2 c^4 n^3 +
c^6 n^3)}

--
---
Francisco Javier Garc=EDa Capit=E1n
http://garciacapitan.99on.com





Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.