The Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » Software » comp.soft-sys.matlab

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: quad2d vs. nested trapz
Replies: 0  

Advanced Search

Back to Topic List Back to Topic List  
Francesco Perrone

Posts: 39
Registered: 5/2/12
quad2d vs. nested trapz
Posted: May 6, 2013 6:36 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

I'd like knowing if there is any way to bypass the call for quad2d with a nested trapz loop. I'll discuss my problem with some more detail: currently, I perform the calculation of a double integral this way:

clc, clear all, close all
load E_integral.mat

c = 1.476;
gamma = 3.0;

beta_int = (c*gamma)./(k_int.*sqrt(E_integral));

figure, loglog(k_int,beta_int,'r','LineWidth',2.0), grid on;

k1 = (.01:.1:100);
k2 = .01:.1:100;
k3 = -100:.1:100;

int_k3 = zeros(size(k2));
int_k3k2 = zeros(size(k1));

for ii = 1:numel(k1)
phi11 = @(k2,k3) PHI11(k1(ii),k2,k3,k_int,beta_int);
int_k3(ii) = 2*quad2d(phi11,-100,100,-100,100);

where PHI11 is defined as

function phi11 = PHI11(k1,k2,k3,k_int,beta_int)
k = sqrt(k1.^2 + k2.^2 + k3.^2);
ksq = k.^2;
k1sq = k1.^2;
fourpi = 4.*pi;
beta = exp(interp1(log(k_int),log(beta_int),log(k),'linear'));
k30 = k3 + beta.*k1;
k0 = sqrt(k1.^2 + k2.^2 + k30.^2);
k0sq = k0.^2;
k04sq = k0.^4;
Ek0 = (1.453.*k04sq)./((1 + k0sq).^(17/6));

C1 = (beta.*k1sq.*(k0sq - 2.*(k30.^2) + beta.*k1.*k30))./(ksq.*(k1.^2 + k2.^2));
C2 = ((k2.*k0sq)./((k1.^2 + k2.^2).^(3/2))).*atan2((beta.*k1.*sqrt(k1.^2 + k2.^2)),(k0sq - k30.*k1.*beta));
xhsi1 = C1 - (k2./k1).*C2;
xhsi1_sq = xhsi1.^2;
phi11 = (Ek0./(fourpi.*k04sq)).*(k0sq - k1sq - 2.*k1.*k30.*xhsi1 + (k1.^2 + k2.^2).*xhsi1_sq);

and E_integral.mat can be obtained this way:

clc,clear all,close all

k_int = .001:.01:1000;

Ek = (1.453.*k_int.^4)./((1 + k_int.^2).^(17/6));

E = @(k_int) (1.453.*k_int.^4)./((1 + k_int.^2).^(17/6));

E_integral = zeros(size(k_int));

for ii = 1:numel(k_int)
E_integral(ii) = integral(E,k_int(ii),Inf);


Now the question is: would it be possible to overlook quad2d and the handle function in favor of a more practicle approach, by using a nested trapz function?

So far, I've tried the following piece of code, which has not yielded to the expected results:

int_k33 = zeros(size(k2));
S_11 = zeros(size(k1));
for ii = 1:1
for jj = 1:numel(k2)
int_k33(jj) = trapz(k3,PHI11(k1(ii),k2(jj),k3,k_int,beta_int));
S_11(ii) = 4*trapz(k2,int_k33);

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.