Drexel dragonThe Math ForumDonate to the Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » sci.math.* » sci.math.num-analysis

Topic: A block encryption processing idea taken from linear algebra
Replies: 1   Last Post: Jun 27, 2013 4:28 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Mok-Kong Shen

Posts: 596
Registered: 12/8/04
A block encryption processing idea taken from linear algebra
Posted: Jun 17, 2013 11:18 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

The iterative solution of a system of n linear equations can be
formulated as follows:

x1 := a11*x1 + a12*x2 + ... + a1n*xn + b1
x2 := a21*x1 + a22*x2 + ... + a2n*xn + b2
xn := an1*x1 + an2*x2 + ... + ann*xn + bn

where (in the so-called single-step method) the assignments are
performed sequentially. See V. N. Faddeeva, Computational Methods of
Linear Algebra, p.117, Dover Publ., 1959. (Note that many textbooks
of linear algebra present however a different, in fact less general,

Using this as a hint, we propose to do for block encryption processing
of n blocks, x1, x2, ... xn, the follwoing, where the f's are
invertible non-linear functions, the r's are pseudo-random numbers and
the assignments are performed sequentially (the f's and the r's are
(secret) key-dependent and different for different rounds, if more
then one rounds are used, computation is mod 2**m for block size of
m bits):

x1 := f1(x1 + x2 ... + xn + r1)
x2 := f2(x1 + x2 ... + xn + r2)
xn := fn(x1 + x2 ... + xn + rn)

Note that we have left out the multiplication with a's, which is
deemed a justifiable simplicity since the f's are non-linear and
further the r's are pseudo-random. Note also that the effect of
block-chaining in the use of the common block ciphers is intrinsically
present in our scheme. A viable variant of the scheme is to employ
^r instead of +r.

M. K. Shen

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2016. All Rights Reserved.