Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Can a fraction have none noneending and nonerepeating decimal representation?
Replies: 108   Last Post: Aug 16, 2013 5:22 PM

 Messages: [ Previous | Next ]
 JT Posts: 1,434 Registered: 4/7/12
Re: Can a fraction have none noneending and nonerepeating decimal representation?
Posted: Aug 2, 2013 5:44 PM

Den fredagen den 2:e augusti 2013 kl. 22:09:34 UTC+2 skrev Ray Vickson:
> On Friday, August 2, 2013 12:12:51 PM UTC-7, jonas.t...@gmail.com wrote:
>

> > Den fredagen den 2:e augusti 2013 kl. 20:08:42 UTC+2 skrev Virgil:
>
> >
>
> > > In article <a1a2f36f-b889-4902-9074-70ed4554acb4@googlegroups.com>,
>
> >
>
> > >
>
> >
>
> > > jonas.thornvall@gmail.com wrote:
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > > > If you still think that pi is a rational number, perhaps you can
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > > tell us what rational number it is:
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > > pi = p/q for some integers p and q.
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > > What are p and q?
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > >
>
> >
>
> > >
>
> >
>
> > > > > -- Richard
>
> >
>
> > >
>
> >
>
> > > >
>
> >
>
> > >
>
> >
>
> > > > Well you can work it out just the way i did.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > If you actually did work it out, you should be able to tell us the p and
>
> >
>
> > >
>
> >
>
> > > q that you arrived at whose quotient exactly equals pi.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > > I told you how and you are the mathecians not me.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > The thing is that a number of mathematicians have been able to prove
>
> >
>
> > >
>
> >
>
> > > conclusively that pi is not rational,. i.e. cannot be expressed as the
>
> >
>
> > >
>
> >
>
> > > quotient of two integers.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > Every algebraic number, including all rational numbers, is the solution
>
> >
>
> > >
>
> >
>
> > > of a polynomial equation in one variable with integer coefficients, and
>
> >
>
> > >
>
> >
>
> > > there are several proofs that pi is NOT the solution to any such
>
> >
>
> > >
>
> >
>
> > > equation.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > Learn a little mathematics before trying to teach any.
>
> >
>
> > >
>
> >
>
> > > --
>
> >
>
> >
>
> >
>
> > I think i had this answer prepared for a long time, and i think it goes along like this, i am not a teacher, i am not a mathematician and even if i were why would i go on teach monkeys math?
>
> >
>
> >
>
> >
>
> > No better send the math to people whos main occupation is not to eat others monkeys ass.
>
> >
>
> >
>
> >
>
> > Do you understand?
>
>
>
> Yes. We now understand that you are psychotic.

Fine but you must consider that there is other people who received what i told you and they may be of another opinion.

And when they study the fact they also conclude "ass monkeys"

Date Subject Author
7/30/13 JT
7/30/13 JT
7/30/13 Virgil
7/31/13 JT
7/31/13 Virgil
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Virgil
7/31/13 Virgil
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 LudovicoVan
7/31/13 JT
7/31/13 LudovicoVan
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 Virgil
8/1/13 JT
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/3/13 grei
7/31/13 JT
8/4/13 Brian Q. Hutchings
8/4/13 Brian Q. Hutchings
7/31/13 Tucsondrew@me.com
7/31/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 Virgil
8/1/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 JT
8/1/13 JT
8/1/13 Virgil
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Virgil
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 Richard Tobin
8/2/13 David Bernier
8/2/13 JT
8/2/13 Richard Tobin
8/2/13 JT
8/2/13 Peter Percival
8/2/13 Richard Tobin
8/2/13 JT
8/2/13 Peter Percival
8/2/13 Richard Tobin
8/16/13 Earle Jones
8/2/13 Virgil
8/2/13 JT
8/2/13 RGVickson@shaw.ca
8/2/13 JT
8/2/13 Virgil
8/2/13 JT
8/2/13 Virgil
8/2/13 Virgil
8/2/13 Virgil
8/2/13 David Bernier
8/2/13 JT
8/2/13 Virgil
8/2/13 JT
8/2/13 JT
8/2/13 Virgil
8/3/13 David Bernier
8/3/13 David Bernier
8/4/13 David Bernier
8/2/13 quasi
8/2/13 JT
8/2/13 JT
8/2/13 Virgil
8/2/13 Shmuel (Seymour J.) Metz
8/2/13 JT
8/2/13 Virgil
8/2/13 FredJeffries@gmail.com
8/16/13 Earle Jones
7/31/13 JT
7/31/13 Phil H
7/31/13 JT
7/30/13 Earle Jones