Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
NCTM or The Math Forum.


quasi
Posts:
12,042
Registered:
7/15/05


a distance function on Z^2
Posted:
Oct 4, 2013 8:55 PM


For P,Q in R^2, let P  Q denote the usual Euclidean distance from P to Q.
Define a graph G with vertex set Z^2 such that, for distinct points P,Q in Z^2, PQ is an edge iff
(1) P  Q is a positive integer.
(2) The line segment PQ is not horizontal or vertical.
For P,Q in Z^2, let d(P,Q) denote the graphtheoretic distance from P to Q in the graph G.
I'll pose 3 problems ...
Problem (1) is fairly easy.
Problem (2) is medium hard.
For problem (3), I don't yet have a solution.
(1) Show that G is connected.
(2) Find points P,Q in Z^2 such that d(P,Q) = 3.
(3) Prove or disprove: The diameter of G is 3.
quasi



