
Re: "Unphysical" symmetries
Posted:
Dec 18, 2013 12:03 PM


José Carlos Santos <jcsantos@fc.up.pt> wrote: > On 08/12/2013 13:38, fc3a501@unihamburg.de wrote:
>> Example: The symmetry group of the utility graph K3,3 has 72 elements >> if I googled correctly. So no 3D symmetry group fits. >> >> If I go to higher symmetry, is *any* group the subgroup >> of some R_n (rotation group of dimension n)? Methinks yes, >> but already in 4D my head hurts :)
> I am not sure to have understood your question, but if you are asking > "Is every finite group isomorphic to a subgroup of the group SO(R,n) of > all orientationpreserving linear isometries of R^n, for some _n_?", > then yes, it is true. Do you want a proof of this?
Not necessary :) Yes, that sounds like what I wanted to know. THX,  Hauke Reddmann <:EX8 fc3a501@unihamburg.de Hund frißt Hund jeden Tag  Pal jetzt NEU mit Menschgeschmack Hund frißt Hund heißt der Sport  hoff', du stehst auf Völkermord (Der Nachwuchs)

