Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Tim Chow in Forcing for dummies
Replies: 75   Last Post: Nov 21, 2017 11:34 AM

 Messages: [ Previous | Next ]
 wolfgang.mueckenheim@hs-augsburg.de Posts: 3,394 Registered: 10/18/08
Tim Chow in Forcing for dummies
Posted: Nov 4, 2017 6:02 AM

Hr e says about the axiom of power set: What 'goes wrong' is the rest of the axiom: y does not contain every subset of x; it only contains those subsets of x that are in M. So it is perfectly possible that this 'powerset' of x is countable. [Tim Chow: "Forcing for dummies", sci.math.research (10 Mar 2001)]

Of course here he needs to address dummies. Everyone else would see through clearly: If a set x is in the model M, but a subset of x is missing in the model M, then at least one element of this x must be missing in the model M, then x is not in the model M

In particular, If |N is in the model M, but a subset of |N is missing in the model M, then at least one element of |N must be missing in the model M, then |N is not in the model M, and M is not even a model of ZF for violating the axiom of infinity.

Therefore the model M is uncountable from outside. A countable model of ZFC and a model of whole ZFC are mutually incompatible. Skolem's proof implies that ZFC cannot have any model.

Regards, WM

Date Subject Author
11/4/17 wolfgang.mueckenheim@hs-augsburg.de
11/4/17 Me
11/4/17 Me
11/4/17 wolfgang.mueckenheim@hs-augsburg.de
11/4/17 Tucsondrew@me.com
11/4/17 Tucsondrew@me.com
11/5/17 wolfgang.mueckenheim@hs-augsburg.de
11/5/17 Tucsondrew@me.com
11/5/17 wolfgang.mueckenheim@hs-augsburg.de
11/5/17 Tucsondrew@me.com
11/6/17 wolfgang.mueckenheim@hs-augsburg.de
11/6/17 Tucsondrew@me.com
11/6/17 wolfgang.mueckenheim@hs-augsburg.de
11/6/17 FredJeffries@gmail.com
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/7/17 Tucsondrew@me.com
11/7/17 FredJeffries@gmail.com
11/7/17 Tucsondrew@me.com
11/10/17 FredJeffries@gmail.com
11/11/17 wolfgang.mueckenheim@hs-augsburg.de
11/11/17 FredJeffries@gmail.com
11/11/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Tucsondrew@me.com
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Tucsondrew@me.com
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 Tucsondrew@me.com
11/17/17 4musatov@gmail.com
11/4/17 zelos.malum@gmail.com
11/4/17 FredJeffries@gmail.com
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Tucsondrew@me.com
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Tucsondrew@me.com
11/11/17 4musatov@gmail.com
11/17/17 4musatov@gmail.com
11/12/17 Dan Christensen
11/13/17 wolfgang.mueckenheim@hs-augsburg.de
11/13/17 Dan Christensen
11/13/17 wolfgang.mueckenheim@hs-augsburg.de
11/13/17 Dan Christensen
11/14/17 wolfgang.mueckenheim@hs-augsburg.de
11/14/17 Dan Christensen
11/14/17 wolfgang.mueckenheim@hs-augsburg.de
11/14/17 Dan Christensen
11/15/17 wolfgang.mueckenheim@hs-augsburg.de
11/15/17 Dan Christensen
11/15/17 wolfgang.mueckenheim@hs-augsburg.de
11/15/17 Dan Christensen
11/15/17 Dan Christensen
11/16/17 FredJeffries@gmail.com
11/16/17 wolfgang.mueckenheim@hs-augsburg.de
11/16/17 Tucsondrew@me.com
11/16/17 wolfgang.mueckenheim@hs-augsburg.de
11/16/17 Dan Christensen
11/16/17 bursejan@gmail.com
11/16/17 Jan Burse
11/16/17 bursejan@gmail.com
11/16/17 Dan Christensen
11/16/17 FredJeffries@gmail.com
11/16/17 wolfgang.mueckenheim@hs-augsburg.de
11/14/17 Tucsondrew@me.com
11/15/17 wolfgang.mueckenheim@hs-augsburg.de
11/15/17 Tucsondrew@me.com
11/18/17 Jan Burse
11/20/17 wolfgang.mueckenheim@hs-augsburg.de
11/20/17 bursejan@gmail.com
11/20/17 wolfgang.mueckenheim@hs-augsburg.de
11/20/17 bursejan@gmail.com
11/21/17 wolfgang.mueckenheim@hs-augsburg.de
11/21/17 bursejan@gmail.com
11/21/17 bursejan@gmail.com
11/21/17 Tucsondrew@me.com