TOPICS
This page:
calculus
Search
Dr. Math
See also the
Internet Library:
calculus
HIGH SCHOOL
About Math
Analysis
Algebra
basic algebra
equations/graphs/
translations
linear algebra
linear equations
polynomials
Calculus
Complex Numbers
Calculators/
Computers
Definitions
Discrete Math
permutations/
combinations
Exponents
Logarithms
Fibonacci Sequence/
Golden Ratio
Fractals
Functions
Geometry
Euclidean/plane
conic sections/
circles
constructions
coordinate plane
triangles/polygons
higherdimensional
polyhedra
nonEuclidean
practical geometry
symmetry/tessellations
History/Biography
Interest
Logic
Negative Numbers
Number Theory
Physics/Chemistry
Probability
Projects
Puzzles
Sequences/Series
Sets
Square/Cube Roots
Statistics
Transcendental
Numbers
Trigonometry

Browse High School Calculus
Stars indicate particularly interesting answers or
good places to begin browsing.
Selected answers to common questions:
Chain rule.
Maximizing the volume of a box.
Maximizing the volume of a cylinder.
Volume of a tank.
What is a derivative?
 Raabe's Theorem [8/23/1996]

Regarding Raabe's result for the convergence of a numerical series of
nonnegative terms  I am looking for is a convergent series having m =
1.
 Radian vs. Degree, Sin Derivatives [10/23/2001]

Why do you get a different answer when you ask your calculator for the
derivative of sinx in degree rather than radian mode?
 Radius of Curvature [07/23/2003]

I have several ellipses whose major and minor diameters I know, but
I have no information about their foci.
 Range of rational functions [12/1/1994]

Given the following rational function: f(x)= (x1)/(x^2+3x1), how do you
find the range? Our book gives the answer of: (neg infinity to 0.12] U
[0.65 to pos infinity).
 Rate of Change Constant? [03/20/2002]

The rate of change of e^x is e^x. Does this mean that the rate of change
is constant? Why are sinx,cosx,... and sinhx,coshx,.... similar?
 Rate of Change of a Function [6/10/1996]

Show that the expression for the rate of change can also be given by cos
x cot^2 x.
 Rate of Change of Angle [8/12/1996]

Find the rate at which angle BXA is changing in radians per second...
 Rate of Change of Radius of a Cone [03/07/1999]

Using the measured rate of change in volume of water in a cone, calculate
the rate at which the circular area of water reduces when the radius is r
centimetres.
 Ratioing Errors [01/07/2002]

How do you calculate the error bars for ratios?
 Rational Function [04/03/1997]

Given the rational function y=r(x)=(4x^6x^4)/(x^5+5) describe its end
behavior...
 Raytrace of a Star Sapphire [12/11/1996]

How do I find the rotations necessary to create a raytrace of a star
sapphire so that the star always faces the camera?
 Rectification of a Quartic [12/02/1997]

I've been told that some 4th order equations can be rectified. Are there
any Cassinian ovals whose perimeter can be calculated without looking up
tables?
 Recurrence Relation Resolution [11/25/2013]

A student struggles to determine the limit points and explicit formula for a recurrence
relation complicated by powers and other operations. Exploiting derivatives and
ratios, Doctor Vogler shows the way.
 Related Rates and a Decreasing Radius [11/18/1998]

A nitroglycerin lump is decreasing at a rate of 2 cu.cm/sec. Use related
rates to find how fast the lump's radius decreases at 9pi/4 cu.cm.
 Related Rates: A Tank of Two Saltwater Concentrations [08/05/1997]

A tank contains 150 litres of brine solution. The concentration is 0.7 kg
of salt per litre... Find the time when the salt content will be 90 kg.
 Related Rates: Circle Inscribed in an Expanding Square [03/01/1999]

A circle is inscribed in a square tangent to each side of the square. The
circumference of the circle is increasing at a constant rate of 6 inches
per second...
 Related Rates  Clock Hands [04/05/1999]

How fast is the distance between the tips of the hands on a watch
changing at one o'clock?
 Related Rates: Hair on an Inflating Balloon [10/16/2003]

A related rate problem involving a 2 cm long hair lying on a spherical
balloon as the balloon is inflated.
 Related Rates Problems [01/15/1999]

A plane flying horizontally at an altitude of 1 mi and a speed of 500
miles/hour...
 Related Rates: The Edges of an Expanding Cube [03/11/1998]

The rate of change of the edges of a cube, given the rate of change of
its volume.
 The Relation of the Speed of a Boat to the Water Line [2/27/1996]

What is the mathematical formula or equation for calculating the speed of
a boat as it relates to the water line of the boat.?
 The Relationship of the Tangent to a Curve and the Area under a Curve [10/25/1995]

The problem of drawing a tangent to a given curve at a given point is
closely connected to the problem of finding areas ("areas under a
curve"). What is the connection, and when and by whom was it discovered?
 Relative and Absolute Extrema of a Function [01/07/2004]

What is the difference between the absolute extrema and the relative
extrema in calculus?
 Relativity [05/22/2002]

How do you demonstrate algebraically that [the following expressions]
are proportional to each other even when they describe 'events' that
are not on the expanding wavefront of light?
 The Riemann Sum of Sin(x) [02/07/2001]

How do you evaluate the integral of sin(x) from 0 to pi by Riemann sum?
 Riemann Sums and Antiderivatives [07/11/1999]

Are there any other ways of illustrating the link between Riemann sums
and antiderivatives?
 Riemann Sums and the Integral [01/18/1999]

Why does the limit of Riemann sums turn out to be the integral? How is
that derived? What is behind it?
 A Rumor Spreads [04/01/1999]

A rumor spreads through a community at the rate dy/dt = 2y(1y), where y
is the proportion of the population that has heard the rumor at time t...
 Sea Navigation: Great Circles [11/4/1994]

In sea navigation, given two points A,B with LON and LAT coordinates,
find the travel distance from A to B. The distance is actually the great
circle passing A and B. The solution is needed in the form of a double
integral where the first int covers the LONs and the second the LATs. I
guess the difficult part is to form the vector.
 Second Derivative of a Function With Absolute Values [02/27/1998]

Let f(x) = x^3. Find f"(0).
 Second Order Differential Equation [11/04/2001]

By letting p = dy/dx, solve y(d2y/dx2) = 2 (dy/dx)2.
 Sequences and Series [4/27/1996]

Determine the number of arithmetic means between two numbers whose sum is
5.5.
 Setting Interest Rate to Maximize Profit [7/25/1996]

A loan company is limited to charging maximum 18 percent interest on a
loan. The amount of money available for loans is proportional to the
interest rate the company will pay its investors...
 Shakespearean Differential Equations [10/27/1998]

Can you help me solve these differential equations: dG/dt=aJbG and dJ/
dt=cG?
 Shortest Distance between a Point and a Circle [1/22/1996]

Find the shortest distance between the point (4,5) and the circumference
of x^2 + y^2 = 9.
 Simplifying and Solving a Natural Log Problem [11/15/1995]

Integrate ln(r/a)dr  the limits are a to b. Is this possible, or is
there some table for it?
 Simpson's Rule [04/12/1997]

Find the volume of the solid formed if the curve y = cos 1 x is rotated
about the xaxis between x=0 and x=1.
 Simpson's Rule  Alternating Pattern [09/20/1997]

I'm trying to apply Simpson's rule to a computer program, but I don't
understand it well enough  can you tell me how it works?
 Simpson's Rule for Cubics [10/23/2000]

Why is Simpson's rule exact for cubic polynomials?
 Simpson's Rule/Trapezoid Rule [02/01/1998]

How is Simpson's rule derived and why it is a better approximation of the
integral than the midpoint (rule?) or trapezoidal method?
Page: [<prev]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
[next>]
