Associated Topics || Dr. Math Home || Search Dr. Math

### Two Ways to Find a Formula

```
Date: 04/14/98 at 17:24:19
From: Mon
Subject: Calculus, differentiating, geometric series

For any real number x, such that x does not equal 1, I am trying to
prove that:

n          x-(n+1)x^(n+1) + nx^(n+2)
Sigma rx^r = -------------------------
r=1                   (1-x)^2

by using calculus, differentiating (with respect to x), and the
formula for the sum of the geometric series:

n
Sigma x^r
r=0
```

```
Date: 04/15/98 at 08:02:27
From: Doctor Anthony
Subject: Re: Calculus, differentiating, geometric series

The series required is:

x + 2x^2 + 3x^3 + 4x^4 + ... + nx^n

You can sum this in two ways. The non-calculus way is as follows:

S =  x + 2x^2 + 3x^3 + ... + nx^n
xS =       x^2 + 2x^3 + ... + (n-1)x^n + nx^(n+1)
----------------------------------------------------- subtracting
(1-x)S =  x +  x^2 +  x^3 + ... + x^n      - nx^(n+1)

(1-x)S = x(1-x^n)/(1-x)  -  nx^(n+1)

x(1-x^n)      nx^(n+1)
S = --------  -  ----------
(1-x)^2        (1-x)

x(1-x^n) - n(1-x)x^(n+1)
S = ------------------------
(1-x)^2

x - x^(n+1) - nx^(n+1) + nx^(n+2)
S = ---------------------------------
(1-x)^2

x - (n+1)x^(n+1) + nx^(n+2)
S = ----------------------------
(1-x)^2

CALCULUS METHOD

Consider the series:

1 + x + x^2 + ......+ x^n

differentiating:

1 + 2x + 3x^2 + 4x^3 + .. + nx^(n-1)

multiply by x:

x + 2x^2 + 3x^3 + ........+ nx^n

The sum of the series 1 + x + x^2 + .... + x^n is given by:

1-x^(n+1)
---------
1-x

and differentiating this we get:

(1-x)(-(n+1)x^n) - (1-x^(n+1))(-1)
----------------------------------
(1-x)^2

-(n+1)x^n + (n+1)x^(n+1) + 1 - x^(n+1)
= --------------------------------------
(1-x)^2

1 - (n+1)x^n + nx^(n+1)
= -----------------------
(1-x)^2

and finally to get the sum we require we must multiply this result
by x.

The required sum is:

x - (n+1)x^(n+1) + nx^(n+2)
---------------------------
(1-x)^2

-Doctor Anthony,  The Math Forum
Check out our web site! http://mathforum.org/dr.math/
```
Associated Topics:
High School Calculus
High School Sequences, Series

Search the Dr. Math Library:

 Find items containing (put spaces between keywords):   Click only once for faster results: [ Choose "whole words" when searching for a word like age.] all keywords, in any order at least one, that exact phrase parts of words whole words

Submit your own question to Dr. Math
Math Forum Home || Math Library || Quick Reference || Math Forum Search