Associated Topics || Dr. Math Home || Search Dr. Math

### Monkeys, Coconuts, and Seven Piles

```
Date: 11/29/2001 at 12:13:07
From: mike
Subject: lots of equations, lots of unknowns...

I've tried to work this problem lots of ways, but it has so many
equations that I'm never sure if I'm getting it right.

Seven monkeys spend the day gathering coconuts. As night falls, they
gather all the coconuts into one pile and agree to divide them up
evenly in the morning.

At 12:00 midnight one monkey gets up and divides the pile of coconuts
into seven piles with one left over, which he throws into the ocean.
He takes one of the piles and hides it in a secret hiding place and
combines the remaining six for the others to find in the morning. At
1:00 A.M., another monkey wakes up and divides the pile into seven,
throwing the extra one into the ocean, hiding one pile in his secret
hiding place, then grouping the rest.

All seven monkeys do this. In the morning, they get up to divide the
pile and it looks noticeably smaller! They divide the pile into seven,
throw the left over one into the ocean, then go home. What is the
least number of coconuts they could possibly have started with, and
how many coconuts did each monkey get?

7a+1 = 6b
7b+1 = 6c
7c+1 = 6d
7d+1 = 6e
7e+1 = 6f
7g+1 = 6g
7h+1 = T

OR

a = starting amount of coconuts
b = (6/7)(a-1)
c = (6/7)(b-1)
d = (6/7)(c-1)
e = (6/7)(d-1)
f = (6/7)(e-1)
g = (6/7)(f-1)
h = (6/7)(g-1)
i = (6/7)(h-1)
i = 7j+1

I get messed up making the equation, then also finding an integer for
how many coconuts each monkey got in the end.
```

```
Date: 11/29/2001 at 16:34:18
From: Doctor Rob
Subject: Re: lots of equations, lots of unknowns...

Thanks for writing to Ask Dr. Math, Mike.

This is very similar to the following problems from the Doctor Math
archives:

Monkeys Dividing the Coconut Pile
http://www.mathforum.org/dr.math/problems/thomas7.28.98.html

Coconut and Monkey Puzzle
http://www.mathforum.org/dr.math/problems/koestler12.18.97.html

Coconut Piles
http://www.mathforum.org/dr.math/problems/stillman10.12.98.html

More Monkeys and Nuts
http://www.mathforum.org/dr.math/problems/holt.6.07.99.html

The equations you have to solve are

a = starting amt of coconuts
b = (6/7)*(a-1) = amt after 1 monkey,
c = (6/7)*(b-1) = amt after 2 monkeys,
d = (6/7)*(c-1) = amt after 3 monkeys,
e = (6/7)*(d-1) = amt after 4 monkeys,
f = (6/7)*(e-1) = amt after 5 monkeys,
g = (6/7)*(f-1) = amt after 6 monkeys,
h = (6/7)*(g-1) = amt after 7 monkeys,
i = (1/7)*(h-1) = amt each got at the end.

Clearing fractions, these become

6*a - 7*b = 6,
6*b - 7*c = 6,
6*c - 7*d = 6,
6*d - 7*e = 6,
6*e - 7*f = 6,
6*f - 7*g = 6,
6*g - 7*h = 6,
h - 7*i = 1.

Eliminating in turn b, c, d, e, f, g, and h, these equations give,
in turn,

6^1*a - 7^1*b = 6*(7^1 - 6^1),
6^2*a - 7^2*c = 6*(7^2 - 6^2),
6^3*a - 7^3*d = 6*(7^3 - 6^3),
6^4*a - 7^4*e = 6*(7^4 - 6^4),
6^5*a - 7^5*f = 6*(7^5 - 6^5),
6^6*a - 7^6*g = 6*(7^6 - 6^6),
6^7*a - 7^7*h = 6*(7^7 - 6^7),
6^7*a - 7^8*i = 7^8 - 6^8.

This last equation has a particular solution a = -6 and i = -1. (Check
to make sure you see why this works.) The general solution is given by

a = -6 + 7^8*t,
i = -1 + 6^7*t,

where t can be any integer. Putting t = 1 gives you the smallest
possible positive answer for a and i. I leave it to you to find the
number of coconuts each monkey got.

With over 5 million coconuts at the start, there was a whole lot
of counting going on during the night!

Notice the really nice "virtual solution" starting with a = -6
coconuts:  a = b = c = d = e = f = g = h = -6, i = -1, each
monkey ends up with -2 coconuts, and 8 end up in the ocean!

Feel free to write again if I can help further.

- Doctor Rob, The Math Forum
http://mathforum.org/dr.math/
```
Associated Topics:
High School Puzzles

Search the Dr. Math Library:

 Find items containing (put spaces between keywords):   Click only once for faster results: [ Choose "whole words" when searching for a word like age.] all keywords, in any order at least one, that exact phrase parts of words whole words

Submit your own question to Dr. Math
Math Forum Home || Math Library || Quick Reference || Math Forum Search