Associated Topics || Dr. Math Home || Search Dr. Math

### Subtracting Negative Numbers

```
Date: 03/30/97 at 08:48:24
From: Kelly Buchan
Subject: Negative numbers

I am a teacher, and still have trouble explaining subtracting negative
numbers from negative numbers to my students.  I have tried many
different ways.  I think the underlying problem is that I truly don't
understand it myself.

If you owe me 5 dollars (-5) and then you owe me 5 more dollars (-5)
that would be an addition of negative numbers right?

(-5) + (-5) = (-10)

If you owe me 5 dollars (-5) and I suggest that you can forget the
debt, that means you can subtract the (-5) right?

(-5) -(-5) = 0

Do I have it yet?

Kelly
```

```
Date: 03/31/97 at 17:30:46
From: Doctor Keith
Subject: Re: Negative numbers

Hi,

Negative numbers get everyone. Your example seems good but allow me
to give a few examples and some comments to help clarify.

1) Accounting (similar to your example)
Say I borrow \$5 from you and buy lunch since I forgot my wallet.
I owe you \$5 so on my balance sheet I have -5.  Later I get my
wallet and pay you the \$5 back so I can subtract my debit (a net
credit, subtracting a negative is a positive).  So we have
-5 -(-5) = -5 +5 = 0, which is what I now owe.

2) Driving
You are driving with cruise control set at 65mph (in a 65 zone,
of course), which we will call your reference speed.  You see a
sign stating that you are entering a 55 zone so you slow down
10 mph ( -10).  After a few miles a new sign informs you that
you are entering a 65 zone again so you resume your original
speed, thus removing (subtracting) the -10mph modification.
We thus have -10 - (-10) = 0, or no speed modification
(thus you are moving at the reference speed of 65 again).

3) Books
You borrow 3 books from a library.  You thus owe three books (-3).
You read one and discover it does not cover what you want, so you
return (subtract) it (a borrowed book is a minus, thus a -1) and
thus you have subtracted one book you owe, and now owe only two.
And we have:  -3 -(-1) = -3 + 1 = -2

4) Behavior
Johny swears and fights a lot (two negatives).  He feels he wants
to get better so he decides to stop (thus removing or subtracting)
fighting (a negative).  Thus he now has -2 - (-1) = -2 + 1 = -1,
or 1 negative behavior he does a lot.

Remember that subtracting a negative is adding a positive. Seeing this
is a matter of perspective on the problem, as you can see from the
above examples.

Also keep in mind that the negative numbers are the natural extension
of the positive numbers - that is, the basic mathematical operations
(addition, subtraction, etc.) work the same on negative numbers. E.g.:

-5 -(-3) = -(5-3) = -(2) = -2
or
-5 -(-3) = -5 + 3 = -2

So you can handle them using all the fun properties of algebra, like
the distributive property, which is modeled above.

As you can see, the math itself is straightforward. The real challenge
is explaining what it means in real life.  That has always been a
challenge to mathematicians and teachers, but what I have written here
should help you out.  If anything is unclear, or you would like me to
add more detail to any part of this, let me know.

-Doctor Keith,  The Math Forum
Check out our web site!  http://mathforum.org/dr.math/
```
Associated Topics:
Middle School Negative Numbers

Search the Dr. Math Library:

 Find items containing (put spaces between keywords):   Click only once for faster results: [ Choose "whole words" when searching for a word like age.] all keywords, in any order at least one, that exact phrase parts of words whole words

Submit your own question to Dr. Math
Math Forum Home || Math Library || Quick Reference || Math Forum Search